

TOWN OF CANTON ENVIRONMENTAL INVESTIGATION REPORT 4 Barbourtown Road Canton, Connecticut

June 2021 File No. 05.0046589.02

PREPARED FOR:

Town of Canton Canton, Connecticut

GZA GeoEnvironmental, Inc.

95 Glastonbury Boulevard, 3rd Floor | Glastonbury, CT 06033 860-286-8900

31 Offices Nationwide www.gza.com

Copyright© 2021 GZA GeoEnvironmental, Inc

GEOTECHNICAL
ENVIRONMENTAL
ECOLOGICAL

CONSTRUCTION MANAGEMENT

95 Glastonbury Boulevard 3rd Floor Glastonbury, CT 06033 T: 860.286.8900 F: 860.633.5699 www.gza.com June 23, 2021 File No. 05.0046589.02

Town of Canton Canton Town Hall P.O. Box 168, 4 Market Street Canton CT 06019

Attention: Mr. Robert Skinner

Re: Environmental Investigation Report

4 Barbourtown Road Canton, Connecticut

Dear Mr. Skinner:

In response to a Connecticut Department of Energy and Environmental Protection (CTDEEP) letter dated November 15, 2019 to the Town of Canton, GZA GeoEnvironmental, Inc. (GZA) has completed investigations to assess the impact of Aqueous Film Forming Foam (AFFF) which was used in firefighting training conducted at the Cherry Brook Primary School at 4 Barbourtown Road (Site). Previously, adjacent water supply wells were tested, and no samples were reported above the CTDEEP's action limit for the sum of five per- and polyfluoroalkyl substances (PFAS) compounds.

This report delineates the nature and extent of the PFAS impacts both on- and off-Site from the AFFF firefighting training activities. The report indicates that the level of PFAS contamination will require remedial action to comply with the CTDEEP Remediation Standard Regulations (RSRs). A Remedial Action Plan (RAP) is being developed to define the remedial goals and outline the remedial approach to comply with the RSRs and estimated costs are being developed to implement the remedial work. The conclusions of this letter report are subject to the Limitations included as Appendix A.

If you have any questions, please do not hesitate to contact Richard Desrosiers at 860-965-1117 or richard.desrosiers@gza.com.

Very truly yours,

GZA GeoEnvironmental, Inc.

Benjamin D. Rach Project Manager

Richard J. Desrosiers, PG, LEP

Associate Principal

David J. Rusczyk, **P**E Consultant/Reviewer

cc: Jennifer Kertanis, Farmington Valley Health District
Jade Barber, CTDEEP Remediation Division, Water Protection & Land Reuse
Yvette Nadgir, Chubb North American Claims (via Email)

EXECUTIVE SUMMARY	1
1.0 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 CONCEPTUAL SITE MODEL (CSM) AND REGULATORY FRAMEWORK	2
2.0 FIELD SAMPLING PROGRAM	3
2.1 SOIL DELINEATION	3
2.1.1 Southern Field	3
2.1.2 Eastern Field	4
2.2 GROUNDWATER INVESTIGATION	4
2.2.1 Southern Field	4
2.2.2 Eastern Field and Off-Site	4
2.2.3 Groundwater Sampling	5
2.3 SURFACE WATER SAMPLING	5
2.4 POTABLE WATER SUPPLY SAMPLING	5
2.5 GROUNDWATER HYDRUALIC ANALYSES	6
3.0 GEOLOGIC AND HYDRYGEOLOGIC ASSESSMENT	6
3.1 BEDROCK ELEVATIONS	6
3.2 GROUNDWATER FLOW DIRECTION	6
3.2.1 Water Table Groundwater Flow	6
3.2.2 Intermediate Groundwater Flow	7
3.2.3 Bedrock Groundwater Flow	7
3.3 ESTIMATED PFAS MIGRATION	7
3.4 VERTICAL GROUNDWATER GRADIENTS	8
4.0 PFAS ANALYTICAL DATA ASSESSMENT	8
4.1 GROUNDWATER ANALYTICAL DATA ASSESSMENT	8
4.1.1 Water Table PFAS Assessment	8
4.1.2 Intermediate Groundwater PFAS Assessment	9
4.1.3 Bedrock Groundwater PFAS Assessment	9
4.2 SOIL ANALYTICAL DATA ASSESSMENT - SOUTHERN FIELD	9
4.2.1 Southern Field – Shallow (0 to 2 feet) Total Mass PFAS Analyses	9
4.2.2 Southern Field – Shallow (0-2 feet) SPLP PFAS Analyses	9
4.2.3 Southern Field – Deep (3 to 5 feet) Total Mass PFAS Analyses	10
4.3 SOIL ANALYTICAL DATA ASSESSMENT – EASTERN FIELD	10
4.3.1 Eastern Field – Shallow (0 to 2 feet) Total Mass PFAS Analyses	10
4.3.2 Eastern Field – Shallow (0 to 2 feet) SPLP PFAS Analyses	10
4.3.3 Eastern Field – Deep (3.5 to 6 feet) Total Mass PFAS Analyses	11
4.3.4 Eastern Field – Deep (3.5 to 6 feet) SPLP PFAS Analyses	11
4.4 SURFACE WATER ANALYSES	11
5.0 REGULATORY COMPLIANCE	
6.0 CONCLUSIONS AND RECOMMENDATOINS	12

TABLES

- TABLE 1
 WELL CONSTRUCTION WITH GROUNDWATER ELEVATIONS
- TABLE 2 SOUTHERN FIELD SOIL SAMPLING DATA
- TABLE 3 EASTERN FIELD SOIL SAMPLING DATA

TABLE 4	SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
TABLE 5	SUMMARY OF SURFACE WATER ANALYTICAL RESULTS
TABLE 6	HYDRAULIC CONDUCTIVITY AND SCREENING SUMMARY

FIGURES

FIGURE 1	SITE LOCUS MAP
FIGURE 2	AREAS OF AFFF APPLICATION
FIGURE 3	SOIL BORING LOCATIONS

FIGURE 4 MONITORING WELL AND SURFACE WATER LOCATIONS

FIGURE 5 BEDROCK SURFACE CONTOURS

FIGURE 6A WATER TABLE GROUNDWATER CONTOURS

FIGURE 6B DEEPER OVERBURDEN GROUNDWATER CONTOURS

FIGURE 6C BEDROCK GROUNDWATER CONTOURS
FIGURE 7 WATER TABLE PFAS CONCENTRATIONS
FIGURE 8 INTERMEDIATE PFAS CONCENTRATIONS
FIGURE 9 BEDROCK PFAS CONCENTRATIONS

REPORT LIMITATIONS

FIGURE 10 SOUTHERN FIELD AREA SHALLOW TOTAL PFAS CONCENTRATIONS

FIGURE 11 SOUTHERN FIELD AREA DEEP TOTAL PFAS CONCENTRATIONS

FIGURE 12 EASTERN FIELD AREA SHALLOW TOTAL PFAS CONCENTRATIONS

FIGURE 13 EASTERN FIELD AREA SHALLOW SPLP PFAS CONCENTRATIONS

FIGURE 14 EASTERN FIELD AREA DEEP TOTAL PFAS CONCENTRATIONS

FIGURE 15 EASTERN FIELD AREA DEEP SPLP PFAS CONCENTRATIONS

APPENDICESAPPENDIX A

APPENDIX B	SOIL BORING LOGS
APPENDIX C	SOIL LABORATORY ANALYTICAL REPORTS
APPENDIX D	MONITORING WELL INSTALLATION LOGS
APPENDIX E	GROUNDWATER AND SURFACE WATER FIELD DATA SHEETS
APPENDIX F	GROUNDWATER AND SURFACE WATER FIELD DATA SHEETS

EXECUTIVE SUMMARY

Prior investigations and the supplemental investigations summarized herein have identified the following impacts due to the application of Aqueous Film Forming Foam (AFFF) during firefighting training activities conducted at the Cherry Brook Primary School:

- 1) Private potable water supply wells.
 - a) All private and the Cherry Brook Primary School (CBPS) potable water supply wells sampled reported concentrations below the Department of Public Health (DPH) drinking water action levels (See GZA report dated October 23, 2020). It should be noted that not all property owners permitted access to sample water supply wells.
- 2) Direct Exposure Criteria (DEC)
 - a) All shallow and deep soil samples collected, above the water table and within 15 feet to grade (including samples collected from 0 to 3 inches), reported concentrations of per- and polyfluoroalkyl substances (PFAS) compounds below CTDEEP's DEC.
- 3) Pollutant Mobility Criteria (PMC)
 - a) Total mass analyses reported concentrations of PFAS compounds above the CTDEEP's PMC in both the Eastern and Southern Fields.
 - b) SPLP Leachability analyses reported that all Southern Field samples were below the alternative PMC (see Section 1.2).
 - c) SPLP Leachability analyses reported that concentrations in the shallow and deep soil samples were greater than the CTDEEP's alternate PMC, requiring remedial action.
- 4) Groundwater Protection Criteria (GWPC)
 - a) Groundwater data identified concentrations of PFAS greater than the CTDEEP's GWPC, requiring remedial action.
- 5) Surface water Criteria (SWC)
 - a) Surface water samples reported low concentrations of PFAS; however, there is no RSR criteria to compare these results.

Based upon these findings, it is GZA's recommendation that those soils exceeding the alternative SPLP Pollutant Mobility Criteria in the Eastern Field be remediated to remove the source of PFAS contamination to the groundwater. Because the limits of groundwater contamination (less than 70 ng/L) are defined and generally located beneath the soil source area, GZA recommends that a groundwater and surface water monitoring program be implemented after the soil remedial action. Dependent on the results of the groundwater monitoring, it might become necessary to implement a groundwater treatment remedial action if concentrations increase or if elevated concentrations are reported in the surface water samples

1.0 INTRODUCTION

1.1. BACKGROUND

GZA understands that in 2014 and perhaps as early as 2007/2008, the Town of Canton fire department conducted fire training drills using Aqueous Film Forming Foam (AFFF), at two locations on the grounds of the CBPS located at 4 Barbourtown Road, Canton, Connecticut (Figure 1). During the 2014 fire training drill, approximately 40-gallons of the AFFF concentrate were mixed with approximately 1,300-gallons of water and sprayed in two locations (see attached Figure 2). The first area was the grassy field area between the school's parking lot and Barbourtown Road ("Eastern Field"), whereas the second area was defined as the grassy field south of the school building and north of a playscape ("Southern Field"). The constituents of concern associated with AFFF are per- and polyfluoroalkyl substances (PFAS) which are a group of chemical compounds that may have environmental and human health impacts.

On November 15, 2019 the Connecticut Department of Energy and Environmental Protection (CTDEEP) Bureau of Water Protection and Land Reuse Remediation Division sent a letter to the Town of Canton requesting that the Town conduct subsurface investigations at the two locations where AFFF was used/released oS=CBPS Water the CBPS property and to evaluate adjacent sensitive receptors (potable water supply wells) within a 500-foot radius of the school property boundary (including the CBPS wells).

The Cherry Brook Primary School has two primary bedrock water supply wells (Wells 1 & 2) as shown on Figure 4. These wells are located along the northwestern property line, upgradient of the release of the firefighting foam. An influent well sample (pre-holding tank) was collected by the Town from Wells 1 and 2 on November 11, 2019 and a combined sample (Wells 1 & 2) was collected on November 6, 2019 after the holding tank. These samples were analyzed using EPA Method 537.1. On November 27, 2019, the laboratory reported the results as non-detect at less than 2 parts per trillion (ppt). The Town provided approximately 2,000 gallons of potable water to the school per day during the period while the samples were being analyzed.

1.2. CONCEPTUAL SITE MODEL (CSM) AND REGULATORY FRAMEWORK

The releases were from the application of AFFF onto the CBPS grounds by mixing concentrated AFFF with water during fire training exercises. The released PFAS compounds were either sorbed onto the soil and/or infiltrated to the underlying groundwater. In accordance with the Connecticut Environmental Conditions Online database (CTECO), the CTDEEP has classified the groundwater beneath the Site as "GA", indicating that is suitable for drinking without treatment. The water supply for the private properties surrounding the CBPS are on bedrock wells. The adjacent Cherry Brook (located east and south of the Eastern Field) has been designated as a Class A surface water body. Class A surface waters include habitat for fish and other aquatic life and wildlife; potential drinking water supplies; recreation; navigation; and water supply for industry and agriculture. The Site is underlain by sandy deposits overlying bedrock.

The CTDEEP has established Remediation Standard Regulations (RSRs) to define the regulatory criteria in which to compare site characterization data. The regulatory criteria are further defined under the Additional Polluting Substance (APS) criteria within the framework of the RSRs; however, these criteria have not been promulgated but are required to be considered when comparing data to determine if remedial actions are warranted. In addition, the Connecticut Department of Public Health (DPH) has established a health advisory criterion for PFAS in drinking water, at 70 nano grams per Liter (ng/L), for the sum of 5-PFAS individual compounds.

The current regulatory criteria recommended by CTDEEP and DPH in the comparison of site characterization data (soil, groundwater, surface water and drinking water) are listed below. It is also worth noting that the 70 ng/L for drinking water and groundwater are the current recommended criteria; however, CTDEEP and DPH may lower these criteria in the future. The criteria used for assessing these data include:

- Drinking water samples are compared to the DPH health advisory criteria of 70 ng/L or 0.07 micrograms per liter (μ g/L), for the sum of 5-PFAS compounds.
- Groundwater samples are compared to the APS Groundwater Protection Criteria (GWPC) of 70 ng/L or 0.07 μ g/L, for the sum of 5-PFAS compounds.
- Soil samples are compared to either 1) the direct exposure criteria (DEC) for those soil within the upper 15-feet or 2) the pollutant mobility criteria (PMC) to assess the potential for contaminant to leach into the underlying groundwater.
- The Residential Direct Exposure Criteria (R-DEC) has been established at 1,350 micro grams per kilogram (μg/Kg) for PFAS.

- The Pollutant Mobility Criteria considers two provisions: 1) a direct comparison of the total mass analyses directly to the PMC or 2) a leachability analysis using a synthetic precipitation leaching procedure (SPLP) and comparing those results to ten times the GWPC. The second alternative is considered an alternative PMC under RCSA 22a-133k-2(C)(2)(c). The leachability analysis mimics contaminant migration from soil to groundwater under standard environmental conditions (i.e., during precipitation events). Site data has been collected in order to provide the data needed to assess PFAS under either alternative. These criteria include:
 - Pollutant Mobility Criteria (PMC) established at 1.4 μg/Kg (based on total mass analysis).
 - O Alternative Pollutant Mobility Criteria (PMC) established at 0.7 μg/L (based on SPLP leaching analysis).

2.0 FIELD SAMPLING PROGRAM

The supplemental investigations summarized herein were developed based upon the CSM and previous investigations to define the nature and extent of the PFAS contamination. These investigations focused on 1) soil delineation through the use of total and SPLP limits, 2) defining the nature and extent of groundwater contamination within and beyond the Eastern Field, 3) collecting surface water samples from Cherry Brook to determine potential impacts from groundwater discharge, 4) collection of additional potable water supply well samples, and 5) understanding groundwater hydraulic conditions to determine the fate and transport of PFAS beyond the Eastern Field towards Cherry Brook.

2.1. SOIL DELINEATION

The soil exploration program focused on the two areas where historic AFFF was historically applied.

- In the Southern Field, total PFAS was detected above the mass-based PMC, but the results of the SPLP analyses were below the alternative PMC. However, the total mass analyses indicated an increasing trend to the west, and it was recommended to collect additional western samples, out of an abundance of caution.
- In the Eastern Field, both total and SPLP analyses exceeded either the mass-based PMC or the alternative PMC. The goal was to fill in a data gap along Barbourtown Road and to advance additional borings to further define the limits of the exceedances to reduce the potential area requiring remedial actions.

All soil samples were either collected using hand sampling techniques or a Geoprobe® type direct-push drill rig. Figure 3 depicts the location of these soil samples. Soil boring logs are included in Appendix B soil sample laboratory analytical results are included in Appendix C. A summary of these results is discussed in Section 4.0.

2.1.1. Southern Field

On April 1, 2021, GZA collected four (4) additional soil samples from three (3) separate sample locations (GZ-101S (0-1'), GZ-101D (2-3.7'), GZ-102S (0-2') and GZ-103S (0-2')). One sample was collected beneath the asphalt pavement just southwest of the school (4-square play area) and the other two locations were within the grassy area just west of the asphalt pavement. These locations were selected because 1) the Town indicated that this area might have been used during fire training, and 2) data collected during the initial characterization that identified increased concentration trends to the west. These samples were analyzed for total and SPLP PFAS using a modified EPA method 537.1 revision and total organic carbon. Table 2 presents the analytical results for these samples.

2.1.2. <u>Eastern Field</u>

On April 1, 2021, GZA collected eight (8) shallow samples (GZ-104S through GZ-111S) from 0 to 2 feet below grade. These samples were collected using hand sampling techniques. However, due to encountering large cobble and boulders, deeper samples could not be recovered. On April 14, 2021, GZA collected five (5) deeper samples (GZ-107 (3.8-5.3'), GZ-108 (3.5-5'), GZ-109 (3.2-4.7'), GZ-110 (3.7-5.2') and GZ-111 (3-4.3') using a GeoProbe™ unit.

Samples GZ-104, -105 and -106 were defined as the data gap samples along Barbourtown Road. The remaining samples were advanced to further define the limits of the potential remedial actions. These samples were analyzed for total and SPLP PFAS using a modified EPA method 537.1 revision and total organic carbon. Table 3 presents the analytical results for these samples. Figure 3 shows the sample locations.

2.2. GROUNDWATER INVESTIGATION

Between July 31 and December 7, 2020, either a Geoprobe® type direct-push unit or a Sonic drill rig was used to install nineteen monitoring wells. These wells were vertically installed as 1) shallow monitoring wells screened across the water table, 2) intermediate monitoring wells screened above the bedrock, 3) deep monitoring wells screened in the overburden and shallow weathered bedrock and 4) bedrock monitoring wells screened in bedrock. A summary of the monitoring well construction is provided on Table 1 (screen length, screen depth and media the vertical well screens were installed).

These wells were constructed with 2-inch diameter schedule 40, flush-joint threaded, polyvinyl chloride (PVC) screens completed at depths ranging from 13 and 44.5 feet below grade (fbg). The water table wells were constructed with 10-foot long 10-slot PVC wells screens, whereas the intermediate (wells labeled with an "I") and deep (wells labeled with a "D") were constructed with 5-foot long 10-slot PVC well screens. The wells were sand-packed, sealed with bentonite and finished with either flush-mount road box or a steel standpipe (nearest to Cherry Brook). Monitoring well installation details are included in Appendix D.

Upon completion and prior to groundwater sampling, monitoring wells were developed to remove any fine-grained material that might have entered the wells during construction. These wells were surveyed to define elevations at the top of the PVC casings and at the adjacent ground surface to assess groundwater flow direction. A summary of elevations is provided in Table 1 and the assessment of the data is provided in Section 4.0.

The locations of the monitoring wells are shown of Figure 4. A summary of the well locations are as follows:

2.2.1. Southern Field

During the previous investigation, one monitoring well was installed in the Southern Field (GZ-1) as a shallow overburden well. Based upon the initial groundwater data collected, no additional monitoring wells were installed during this supplemental investigation.

2.2.2. Eastern Field and Off-Site

During the previous investigation, three shallow water table monitoring wells (GZ-2, GZ-3 and GZ-4) were installed in the Eastern Field identifying PFAS contamination. The additional wells were used to evaluate the potential for vertical and horizontal migration to delineate the nature and extent of the PFAS plume. The additional monitoring wells were installed as follows:

- A total of 11 additional monitoring wells were installed in the Eastern Field, either as single wells or in clusters. The vertical screen placements were as follows: 1) shallow overburden wells (GZ-5, GZ-6, GZ-7, GZ-9, GZ-10), 2) intermediate overburden wells (GZ-4I and GZ-9I), 3) deeper overburden/weathered bedrock wells (GZ-2I and GZ-71), and 4) bedrock wells (GZ-2D and GZ-4D).
- A total of four (4) monitoring wells were installed south and east of the Eastern Field. Access to the east was granted by the Town's inland wetlands commission; however, mobility was restricted, and the intended locations were field modified. The vertical screen placements were as follows: 1) shallow overburden wells (GZ-8 and GZ-10), and 2) bedrock wells (GZ-8I and GZ-11I).

2.2.3. Groundwater Sampling

The initial four (4) groundwater samples (GZ-1 through GZ-4) were collected on August 14, 2020. These wells were not resampled during this investigation. On January 13 and 14 2021, GZA sampled the newly installed monitoring wells for analysis of PFAS. Sampling for PFAS required stringent field sampling protocols to reduce the likelihood of false positives and to reduce cross-contamination, given the groundwater criteria is in the parts per trillion range. Prior to sampling, GZA measured the depth to the static groundwater table and then dedicated sampling equipment was lowered to the mid-pint of the monitoring well screened interval. GZA proceeded to sample the wells using CTDEEP low flow sampling techniques using a Geotech® pump, and a YSI™ ProPlus Multiparameter Sondes equipped with a flow-through cell to field measure: pH, oxidation/reduction potential (ORP), conductivity, temperature, and dissolved oxygen. Turbidity was measured using a MicroTPI Turbidity meter. Once all field parameters met low-flow criteria, a sample was collected for PFAS. Groundwater sampling logs are provided in Appendix E and laboratory reports are provided in Appendix F. The results of the laboratory analyses are summarized in Table 4 and discussed in Section 4.0.

2.3. SURFACE WATER SAMPLING

To assess the groundwater connectivity to Cherry Brook, GZA collected three surface water samples on January 15, 2021 when Cherry Brook was under low flow conditions. The goal was to collect a surface water sample that would be representative of a groundwater discharge condition to Cherry Brook.

At the time of surface water sampling, GZA installed three (3) staff gauges. These gauges (SG-1 through SG-3) were surveyed (top of stake) along with a point of the Barbourtown Road bridge. Measurements were collected from these referenced elevations to the surface of Cherry Brook to assess groundwater flow to Cherry Brook.

Figure 4 depicts the location of the monitoring well and staff gauge locations. Surface water sampling logs are provided in Appendix E, surface water laboratory reports are provided in Appendix F and the laboratory analyses are summarized on Table 5.

2.4. POTABLE WATER SUPPLY SAMPLING

GZA recommended that the one potable water supply well at 225 Cherry Brook Road property be sampled because this property appears to be located down gradient of the PFAS plume based upon the initial groundwater sampling completed in August 2020. However, based upon communications between the Town of Canton and the property owner, the property owner did not want the potable water supply sampled. Therefore, no sample was collected.

2.5. GROUNDWATER HYDRAULIC ANALYSES

To assess geologic and hydrogeologic conditions, GZA evaluated the data from the monitoring wells and performed slug tests at each of the nineteen installed monitoring wells. Slug tests were performed by installing a pressure transducer to record displacement from the slug test and the elapsed time for the displacement of groundwater to return to static water levels. For the water table wells, a physical slug was used to produce the water level displacement. For deeper wells (wells with a fully saturated screen), a pneumatic slug test was performed. GZA utilized AQTESOLV for Windows to calculate the hydraulic conductivity for each well. Table 6 presents the calculated hydraulic conductivity for each well.

The hydraulic conductivity values obtained from the field measurements were used to assess the fate and transport of PFAS in the various geologic media (overburden and bedrock). Section 3.3 provides a discussion of the potential distance that the PFAS could have migrated (does not included attenuation, dilution and/or advection).

3.0 GEOLOGIC and HYDRYGEOLOGIC ASSESSMENT

The Site data was used to determine 1) the elevation of bedrock below the Eastern Field, 2) the direction of groundwater flow in the various geologic media, and 3) to estimate the time of travel that PFAS could have migrated since the AFFF was release from the Eastern Field in 2014 (where PFAS concentration exceed the alternative PMC). While it is understood that AFFF may have been used as early as 2007/2008, it is believed that this older release was to the Southern Field and the detected low concentrations in the Southern Field do not warrant remedial action.

3.1. BEDROCK ELEVATIONS

To assess the bedrock elevations beneath, south, and east of the Eastern Field, GZA developed a contour map that depicts bedrock elevations based upon survey data and boring log information. Figure 5 show that the surface of the bedrock appears to slope downward toward the school's rotary. In the northern portion, bedrock dips from the east-northeast towards the west-southwest, whereas in the south, the bedrock dips from the south to the north. Thus, bedrock elevation along Cherry Brook is higher in elevation than the Eastern Field. Due to the limited number of monitoring wells that encountered bedrock, it is unknown if there is a bedrock trough that extends to the southwest.

3.2. GROUNDWATER FLOW DIRECTION

To assess groundwater flow directions, GZA developed three (3) groundwater contour maps (Figures 6A, 6B and 6C) that depict groundwater flow 1) at those wells screened across the water table, 2) those wells screened across the deeper overburden, and those wells screened in the bedrock. A summary of groundwater elevations is provided in Table 1.

3.2.1. Water Table Groundwater Flow

To develop the groundwater water table contour map, all 12 shallow monitoring wells (Southern and Eastern Fields) that intersect the groundwater table were used along with the four (4) surface water points along Cherry Brook. The assumption was that groundwater was discharging to Cherry Brook given the low flow conditions in the brook.

Figure 6A depicts that shallow groundwater flows to the southeast towards Cherry Brook. These data show that groundwater beneath the Eastern Field release area likely discharges to Cherry Brook just north of Barbourtown Road. The hydraulic gradient from GZ-2 to south of GZ-11 was calculated at approximately 0.009.

The August 2020 groundwater level round was used to define the seasonal low groundwater. The seasonal low water table was calculated by averaging depth to water measurements from grade at wells GZ-2 and GZ-3 (considered in the central portion of the eastern field). The seasonal low water table has been estimated at 6.3 feet below ground surface.

3.2.2. Intermediate Groundwater Flow

To develop the intermediate groundwater contour map, GZA used five monitoring wells screened in the deeper overburden within the Eastern Field. For this interpretation, the four (4) surface water points along Cherry Brook were not used.

Figure 6B depicts that intermediate groundwater flows to the south- southeast towards Cherry Brook. These data show that groundwater beneath the Eastern Field release area likely discharges to Cherry Brook at or just north of the Barbourtown Road. The hydraulic gradient from GZ-2I to south of GZ-11I was calculated at approximately 0.009 feet per foot (ft/ft).

3.2.3. <u>Bedrock Groundwater Flow</u>

To develop the groundwater bedrock contour map, GZA used the four monitoring wells fully screened in bedrock. These wells were located within the Eastern Field. For this interpretation, the four (4) surface water points along Cherry Brook were not used.

Figure 6C depicts that bedrock groundwater flows to the southeast towards Cherry Brook. These data show that groundwater beneath the Eastern Field release may discharge to Cherry Brook north of the Barbourtown Road. The vertical gradient downgradient at GZ-11/GZ-11I (south) and GZ-4, GZ-4I and GZ-4D were upward from bedrock to the overburden. However, the vertical gradient at GZ-8/GZ-8I (east) was downward from the overburden to the bedrock. The hydraulic gradient from GZ-2D to south of GZ-11I was calculated at approximately 0.007 ft/ft.

3.3. ESTIMATED PFAS MIGRATION

To estimate the extent of potential PFAS migration, hydraulic data collected from the groundwater elevations along with the calculated average hydraulic gradient (i) values were used to estimate a seepage velocity. The hydraulic conductivity data (k) was calculated from the field slug tests performed on the various vertically screened monitoring wells. The average hydraulic conductivity value for the overburden soil was 5.5 feet per day and the bedrock was 4.7 feet per day. In addition, several wells were screened in the lower overburden soil and partially in the upper weathered bedrock. The average hydraulic conductivity value for the lower overburden soil was 25 feet per day.

The equation for seepage velocity (Vs) is (k)(i)/porosity (n). For this estimate, a soil porosity value of 0.2 was used, whereas a value of 0.1 was used in the fractured bedrock (those wells fully screened in the bedrock). To estimate the distance that PFAS may have traveled (excludes, attenuation, dilution, advection, etc.) since 2014, the seepage velocity was multiplied by the difference in time between 2014 and today (7-years). Table A provides a summary based upon the screened geologic intervals in soil and bedrock.

	Table	A - Pote	ntial PFAS	Migration Dista	nce, over 7-Years	
Well Screen Interval	(k) ft/day	(i)	(n)	(Vs) ft/day	(Vs) ft/year	Migration Distance (feet)
Soil/Overburden	5.5	0.009	0.2	0.25	91.2	640
Bedrock	4.7	0.007	0.1	0.33	120.1	840

These calculations indicate that since 2014, the PFAS released in the Eastern Field could have migrated from approximately 640 to 840 feet down gradient dependent on the media in which ground flows. These distances do not consider travel in the upper weathered bedrock which could transport PFAS further based upon hydraulic conductivity values.

3.4. VERTICAL GROUNDWATER GRADIENTS

Four well clusters were installed with an overburden and bedrock monitoring well. Groundwater elevation data indicated that two of the four well clusters reported upward groundwater flow from bedrock to the overburden, whereas the other two reported a downward vertical flow to the bedrock. A summary of the vertical gradients include:

		G	roundwater Vertical Gradient		
Cluster Wells	Wells ID	Location to Source	Media Type	Vertical _{	gradient
	GZ-2	Dolow Coil	Overburden	Downward	
GZ-2	GZ-2I	Below Soil Hot Spot	Overburden & Weathered Bedrock	(GZ-2 to GZ-2I)	Downward
	GZ-2D	not spot	Bedrock		(GZ-2I to GZ-2D)
	GZ-4	Downgradiant of	Overburden	Upward	
GZ-4	GZ-4I	Downgradient of	Overburden	(GZ-4I to GZ-4)	Upward
	GZ-4D	Soil Hot Spot	Bedrock		(GZ-4D to GZ-4I)
GZ-8	GZ-8	East of the	Overburden	Downward	
GZ-6	GZ-8I	Soil Hot Spot	Bedrock	(GZ-8 to GZ-8I)	
GZ-11	GZ-11	Near Cherry	Overburden	Upward	
GZ-11	GZ-11I	Brook to east	Bedrock	(GZ-11I to GZ-11)	

The two well clusters with a reported upward flow were in the downgradient direction of both groundwater flow and contaminant migration. The two well with a downward flow into the bedrock were located directly below the source of PFAS and the well cluster located to the east of Barbourtown Road.

4.0 PFAS ANALYTICAL DATA ASSESSMENT

To assess the limits of PFAS contamination, GZA developed a series of concentration isopleth maps (Figures 7 to 15) to depict the inferred PFAS (as the sum of 5 compounds) distribution in 1) the groundwater, 2) in soil in the Southern Field, and 3) in soil in the Eastern Field. To the development of the isopleth maps, if the results of PFAS were non-detect, half the detection limit was used for plotting purposes. The data is presented on Tables 2, 3, 4 and 5. A summary of these findings is as follows:

4.1. GROUNDWATER ANALYTICAL DATA ASSESSMENT

The groundwater analyses included an assessment of the 1) shallow water table, 2) intermediate, and 3) bedrock screened intervals. The groundwater data is summarized on Table 4.

4.1.1. Water Table PFAS Assessment

For this analysis, all monitoring wells (Southern and Eastern Fields) were incorporated into the assessment. Figure 7 depicts that the concentration of PFAS in shallow overburden groundwater at concentrations greater than 70 ng/L are isolated to the Eastern Field. The greatest concentration reported was at GZ-2, in the central portion of the field with a concentration of 16,810 ng/L. However, these concentrations decrease beyond GZ-2. The data depicts that the PFAS

plume is migrating in a south-southeasterly direction, generally consistent with groundwater flow. The monitoring well network was sufficient to fully bound the 70 ng/L water table plume.

4.1.2. Intermediate Groundwater PFAS Assessment

Figure 8 depicts the distribution of PFAS in the intermediate groundwater wells. Again, consistent with the water table plume, the greatest concentration was detected at GZ-2i at 930 ng/L. However, unlike the water table wells, a concentration of 140 ng/L was reported at GZ-7i, located to the northeast, along Barbourtown Town Road, whereas the as the water table well (GZ-7) reported a PFAS concentration of 33 ng/L. The downgradient wells reported concentration of 40 ng/L (GZ-4i) and 5 ng/L (GZ-9i). These limited data would suggest that the extent of PFAS may go beyond Barbourtown Town Road on to another Town owned property; however, based upon the groundwater data and decreases beyond the hot spot, further delineation does not seem warranted in these upland wetlands.

4.1.3. <u>Bedrock Groundwater PFAS Assessment</u>

Figure 9 depicts the distribution of PFAS in the bedrock wells. The greatest concentration was reported at GZ-4D, at 102 ng/L, located downgradient of GZ-2. Further downgradient, at GZ-11i, the concentrations were reported at 25 ng/L. To the east, towards Cherry Brook, concentrations were reported at 14 ng/L on the adjacent Town owned property. Except for data to the southwest, the bedrock plume is defined by monitoring wells.

4.2. <u>SOIL ANALYTICAL DATA ASSESSMENT – SOUTHERN FIELD</u>

To assess the soil data, two criteria were used: 1) analytical results from the total mass analyses, and 2) the results from the SPLP analyses. In the case of the Southern Field, only two soil contour maps were developed (shallow total and deep total) because the SPLP data was well below criteria. The Southern Field soil data is summarized in Table 2.

4.2.1. Southern Field – Shallow (0 to 2 feet) Total Mass PFAS Analyses

Figure 10 indicates PFAS concentrations in shallow surface soils in the Southern Field range from 1.4 μ g/L (north) to 6.14 μ g/L (west of sample GZ-102S). A sample was collected beneath the asphalt (GZ-101S) with a reported concentration of 0.15 μ g/L. The other samples were collected from shallow western surface soil samples from 0 to 2 feet below grade. These data continue to show an increase in concentration to the west (GZ-102S) consistent with the previous investigation but below criteria.

4.2.2. <u>Southern Field – Shallow (0-2 feet) SPLP PFAS Analyses</u>

No isopleth maps were developed for the shallow or deep soil SPLP because the SPLP results ranged from non-detect to 0.06 μ g/L for the sum of the five PFAS compounds.

These data indicate that while there were exceedances of the mass-based PMC, all results in the Southern Field were below the alternative PMC. Therefore, based upon the data collected, no further investigations or remedial actions are warranted.

4.2.3. Southern Field – Deep (3 to 5 feet) Total Mass PFAS Analyses

Figure 11 depicts that PFAS were detected in the deep soil samples from two (2) (GZ-D-12 and GZ-D-9) of the seven (7) locations at concentrations greater than 1.4 μ g/L. To the north and west, concentrations decreased with a reported concentration of 0.05 μ g/L at location GZ-D-8. These data continue to show a limited area with concentrations greater than 1.4 μ g/L, consistent with the previous investigation.

4.3 SOIL ANALYTICAL DATA ASSESSMENT – EASTERN FIELD

PFAS concentrations detected in the soil samples from the Eastern Field exceed both the mass-based PMC and the alternative PMC in both the shallow and deep soil samples. To evaluate the extent of the PFAS contamination, four isopleth maps have been developed: 1) shallow total mass analyses, 2) shallow SPLP analyses, 3) deep total mass analyses, and 4) deep SPLP analyses. In addition, an estimate of the total square feet (sf) of soil that contain PFAS concentrations that exceed either the mass-based PMC or the alternative PMC is discussed below. Figure 16 shows the sf of soil that contains PFAS exceeding the alternative PMC.

4.3.1 <u>Eastern Field – Shallow (0 to 2 feet) Total Mass PFAS Analyses</u>

The Figure 12 isopleth identifies that the limit of PFAS concentrations exceeding the PMC of 1.4 μ g/Kg was not fully delineated. The data suggests that there is a localized zone of elevated concentrations ranging from 332.6 to 479.0 μ g/Kg in the central portion of the exploration area. Concentration decreased from the central point outward with PFAS concentrations to the north and south ranging from 3.5 μ g/Kg (south) to 2.9 μ g/Kg (north). To the east, the concentrations decreased along Barbourtown Road ranging from 1.7 to 18.7 μ g/Kg. To the west, the data was limited to the field where elevated concentrations were previously detected. No soil samples were collected beneath asphalt pavement.

The data indicates that all soil samples collected from 0 to 2 feet within the Eastern Field area contain PFAS concentrations that exceed the mass-based PMC value of 1.4 μ g/Kg with a range of concentrations from 1.68 μ g/Kg (GZ-106) to 479.94 μ g/Kg (GZ-109s). The estimated area of soil containing PFAS concentrations above the mass-based PMC of 1.4 μ g/L is at least 30,000 sf; however, the extent of PFAS concentrations exceeding the mass-based PMC value was not fully delineated.

4.3.2 <u>Eastern Field – Shallow (0 to 2 feet) SPLP PFAS Analyses</u>

The Figure 13 isopleth indicates that the extent of PFAS concentrations above the alternative PMC of $0.7 \,\mu\text{g/L}$ (10 x the GWPC) has been fully delineated, except to the west proximate to the asphalt pavement. The greatest concentrations (6.76 to 7.41 $\,\mu\text{g/L}$) were in the central portion of the Eastern Field generally corresponding with the elevated concentration reported for total mass based PFAS. The concentrations surrounding soil samples outside the 0.7 $\,\mu\text{g/L}$ limit were reported from 0.03 to 0.61 $\,\mu\text{g/L}$.

The data suggests that PFAS concentrations in shallow soils above the alternative PMC value of 0.07 μ g/L have been fully delineated (except to the west beneath the asphalt) and that the PFAS impacts above the alternative PMC value cover at least an estimated 14,000 sf. This estimate includes up to the asphalt pavement area west of explorations GZ-17, GZ-14, and GZ-110s.

4.3.3 <u>Eastern Field – Deep (3.5 to 6 feet) Total Mass PFAS Analyses</u>

Figure 14 isopleth generally depicts a similar footprint of impacted soil as the shallow mass based PFAS isopleth map (Figure 12). The highest PFAS concentrations were reported at 337.7 μ g/Kg (GZ-D-5) and 351.84 μ g/Kg (GZ-110). The extent of PFAS impacts at concentrations above the mass-based PMC value of 1.4 μ g/Kg in the deeper zone was delineated to the north (samples GZ-D-2 and GZ-107) and to the south (GZ-D-15). PFAS impacts above the mass-based PMC were not delineated to the east and west.

The data suggests that except for the most northwesterly samples (GZ-D-2 at 0.19 μ g/Kg and GZ-107 at 0.45 μ g/Kg) and most southerly sample (GZ-D-15 at <1.1 μ g/Kg) the remaining samples collected exceeded the mass-based PMC value of 1.4 μ g/L. The range in concentrations greater the 1.4 μ g/Kg was from 1.66 μ g/Kg (GZ-108) to 351.84 μ g/Kg (GZ-110). The total enclosed area with PFAS concentrations greater than the mass-based PMC concentration of 1.4 μ g/Kg has been estimated to cover an area at least 18,500 sf in size; however, the extent of PFAS concentrations exceeding the mass-based PMC value was not fully delineated.

4.3.4 Eastern Field – Deep (3.5 to 6 feet) SPLP PFAS Analyses

The Figure 15 isopleth indicates that PFAS concentrations above the alternative PMC of 0.7 μ g/L (10 x GWPC) in the deep soils in the Eastern Field have been fully delineated, except to the west proximate to the asphalt pavement. The greatest concentrations (6.76 to 7.41 μ g/L) were observed in the central portion of the Eastern Field generally corresponding with the elevated concentrations reported for total mass based PFAS. The PFAs concentrations surrounding soil samples outside the 0.7 μ g/L limit were reported at concentration from 0.03 to 0.29 μ g/L.

The data suggests that the extent of PFAS concentrations in deep soil above the alternative PMC has been fully delineated (except to the west beneath the asphalt) and is estimated to cover an area of at least 9,500 sf. This estimate includes the additional area west of GZ-17 and GZ-14 including soils east of the pavement.

4.4 SURFACE WATER ANALYSES

Figure 4 identifies the location of the three (3) surface water sampling locations (S-1, S-3, and S-5). These samples were collected along with the groundwater samples in January 2021, during a dry period when stream levels were low. Two additional samples are proposed to be collected in late summer, during a dry period downgradient of the defined groundwater plume. These samples will be located downgradient of the PFAS groundwater plume to target the potential discharge areas based upon the lateral limits of the groundwater plume and groundwater flow directions.

The results of the three (3) surface water samples identified only one compound (PFOS) was reported at a concentration an estimated value (J flagged). This sample (S-3) was located north of the Barbourtown Town Road, generally downgradient of the plume.

5.0 REGULATORY COMPLIANCE

As discussed in Section 1.2, the data has been compared to the following criteria to determine compliance with the RSRs.

1. Drinking water – the PFAS concentrations in all the previously collected potable water supply samples were below the DPH's Drinking Water Action Limit 70 ng/L criteria.

- 2. Groundwater PFAS were detected in groundwater at concentrations exceeding the CTDEEP's APS GWPC of 70 ng/L, for the sum of 5-PFAS compounds. The area of groundwater impact includes the Eastern Field and extends to the east of Barbourtown Town Road onto the Town's property, to the west beneath a portion of the parking lot, to the south near the driveway to the school and to the north within the Eastern Field. The greatest concentration is beneath the impacted soil within the Eastern Field.
- 3. Soil Direct Exposure PFAS compounds were not detected in the soil samples analyzed at concentrations above the R-DEC in the Southern or Eastern Fields. The maximum concentration detected was 479.0 μ g/Kg, below the R-DEC of 1,350 μ g/Kg.
- 4. Soil Pollutant Mobility Criteria (PMC) PFAS compounds were detected in soil at concentrations above the mass-based PMC of $1.4 \mu g/Kg$ in both the Southern and Eastern Fields.
 - a. In the Southern Field, the mass-based PMC was exceeded in both the shallow (6 of 11 samples) and deep (2 of 7 samples) soil samples with the highest detected mass based PFAS concentration of $6.1 \,\mu\text{g}/\text{Kg}$.
 - b. In the Eastern Field, the mass-based PMC was exceeded in both the shallow (all 26 samples) and deep (14 of 17 samples) soil samples. The highest concentration reported was 479.0 µg/Kg.
- 5. Soil Alternative Pollutant Mobility Criteria (PMC) SPLP PFAS compounds were detected at concentrations that exceeded the alternative PMC in the Eastern Field but not in the Southern Field. In the Southern Field, the highest SPLP PFAS concentration was 0.06 μ g/L. In the Eastern Field, 8 of the 18 shallow soil samples reported concentrations greater than 0.7 μ g/L, whereas in the deep soil samples 3 of the 30 samples reported concentrations greater than 0.7 μ g/L.

These data suggest that the Southern Field complies with both the soil and groundwater RSR criteria. However, soil and groundwater PFAS impacts within the Eastern Field exceed the applicable RSR criteria.

6.0 CONCLUSIONS AND RECOMMENDATOINS

The investigations completed to date have generally defined the limits of PFAS compounds in soil and groundwater at concentrations that exceed a Remediation Standard Regulation criterion. The investigations completed to date indicate the following:

- No potable water supply well sampled to date reported PFAS compounds at concentrations above DPH's Drinking Water Action Limit.
- No soil sample contained PFAS compounds at concentrations above the Residential Direct Exposure Criteria.
- PFAS concentrations in groundwater in the Eastern Field exceed the Groundwater Protection Criteria. The extent of the groundwater contamination extends to the Town owned land east of Barbourtown Road.
- PFAS concentrations in soil exceed the alternative Pollutant Mobility Criteria in the Eastern Field.
- Surface water samples detected low concentrations of PFAS; however, there is no RSR criteria to compare these
 results. However, these data would indicate that contaminated groundwater has migrated to Cherry Brook, just
 north of the Barbourtown Road bridge.

These data suggest that the release in the Eastern Field will require remedial actions to comply with the RSRs. To achieve compliance, the following briefly outlines three potential soil remedial strategies to comply with the Alternative PMC

1. <u>Soil excavation to the seasonal low water table (approximately 6.3 ftbg):</u> This approach would result in the removal of an estimated_14,000 sf area of impacted shallow soil to a depth of three (3) feet (1,560 cubic yards)

- and an estimated 9,500 sf area of impacted deeper soil from 3.0 feet to 6.3 feet below grade (1,065 cubic yards). A total of 2,625 cubic yards or approximately 3,949 tons would be removed.
- 2. Engineered Control: This approach would involve the removal and off-Site disposal of a portion of the unsaturated PFAS soil (above the seasonal high groundwater reported to approximately 3 feet below grade), placement of an impermeable membrane over the remaining soil exceeding the Alternative PMC to limit the infiltration of precipitation and covering the membrane with clean imported soil. The Engineered Control is a variance from the RSRs that requires Commissioner approval and would include long term inspection and maintenance obligations.
- 3. Soil Stabilization: This approach would use a form of carbon or clay type material to bind the PFAS to the soil making the PFAS stable and immobile. This alternative has been approved in New York State; however, it would require bench scale studies prior to implementation and potentially re-stabilization of the soil.

GZA recommends that a feasibility study and cost benefit analysis be completed for the soil in the Eastern Field to determine the most cost-effective remedial approach that limits potential exposure to the PFAS and limits the Town's liabilities. The results of the feasibility study and cost benefit analysis would be discussed with the Town and other stakeholders and the details on the selected preferred remedy will be outlined within a separate Remedial Action Plan (RAP).

Prior to the implementation of the soil remedial action, GZA recommends collecting additional soil samples along the eastern edge of the parking lot pavement associated with the Eastern Field to fill a data gap. These samples will be collected in the shallow and deep intervals and will include samples collected beneath the pavement.

Groundwater Remedial Actions – While there are exceedances in the groundwater above the RSRs, GZA currently does not recommend the performance of remedial actions to address the groundwater impacts for the following reasons:

- No adjacent sampled potable water supply wells have been impacted.
- At one surface water location, PFOS was reported at 1.4 μg/L. Thus, while it appears PFAS is discharging to Cherry Brook, the groundwater PFAS concentration greater than 70 ng/L was located over 200-feet west of Cherry Brook.
- The groundwater concentrations decrease significantly away from the maximum soil concentrations in the Eastern Field. Therefore, with the remediation of those soil greater than the Alternative PMC, it is anticipated that the groundwater concentrations will decrease over time because the source contributing to groundwater will no longer be present.

Therefore, because the 70 ng/L limit has been defined, GZA would propose that a monitored natural attenuation groundwater sampling program be implemented in-leu of an active groundwater remedial action. However, should the results of the monitoring program not show significant decreases in groundwater concentrations or potable water supply well concentrations increase, then the possible implementation of a groundwater remedial action will be re-evaluated. The recommended groundwater monitoring program would include:

- Installation of additional monitoring wells to monitor changes in groundwater quality after the removal of the soil. GZA recommends the installation of two (2) additional monitoring wells.
 - Sampling of 12 current and the 2 newly installed wells.

- Sampling of select potable water supply wells (if permission is granted) within the potential radius (840 feet) defined where PFAS might have migrated in bedrock. This would include two (2) supply wells not previously sampled.
- o Collection of surface water sampling in conjunction with the groundwater sampling.

TABLES

Table 1Well Construction Details

Town of Canton 4 Barbourtown road Canton, CT

	Canaca	Donth to Ton of	Donth to Bottom of	Caroonod	Well	Reference Elev.	Crada Flav	Ton of Caroon	Det Careen Flour		August 20, 2020		,		
Well	Screen		Depth to Bottom of	Screened			Grade Elev.	Top of Screen,	Bot Screen, Elev.		August 20, 2020		i e	anuary 13, 2021	014.51
	Length	Screen	Screen	Media	Completion	(feet)	(feet)	Elev. (feet)	(feet)	Depth to Water	Depth to Water	- C	Depth to Water	•	GW Elev.
										From PVC (feet)				From Grade (feet)	(feet)
GZ-1	13	7.0	20.0	OB	Road Box	399.43	400.06	393.06	380.06	9.02	9.65	390.41	5.12	5.75	394.31
GZ-2	13	4.5	17.5	OB	Road Box	396.22	397.20	392.70	379.70	5.53	6.51	390.69	3.47	4.45	392.75
GZ-2D	5	39.5	44.5	BR	Road Box	396.59	397.26	357.76	352.76		Not Installed		4.30	4.97	392.29
GZ-2I	5	20.0	25.0	OB/WBR	Road Box	396.25	397.29	377.29	372.29		Not Installed		3.63	4.67	392.62
GZ-3	15	4.3	19.3	OB	Road Box	395.36	396.26	391.96	376.96	5.20	6.10	390.16	3.59	4.49	391.77
GZ-4	10	4.5	14.5	OB	Road Box	395.05	395.44	390.94	380.94	5.33	5.71	389.72	3.64	4.02	391.41
GZ-4D	5	29.0	34.0	BR	Road Box	395.08	395.33	366.33	361.33		Not Installed		3.45	3.70	391.63
GZ-4I	5	16.0	21.0	OB	Road Box	395.24	395.47	379.47	374.47		Not Installed		3.67	3.90	391.57
GZ-5	10	5.0	15.0	OB	Road Box	401.40	402.01	397.01	387.01		Not Installed		7.19	7.79	394.21
GZ-6	10	4.0	14.0	ОВ	Road Box	398.32	398.61	394.61	384.61		Not Installed		4.09	4.38	394.23
GZ-7	10	4.0	14.0	OB	Road Box	396.27	397.06	393.06	383.06		Not Installed		3.54	4.32	392.73
GZ-7I	5	16.0	21.0	OB/BR	Road Box	396.91	397.13	381.13	376.13		Not Installed		4.22	4.43	392.69
GZ-8	10	3.0	13.0	OB	Stand Pipe	395.07	392.64	389.64	379.64		Not Installed		4.66	2.23	390.41
GZ-8I	5	23.5	28.5	BR	Stand Pipe	394.35	392.66	369.16	364.16		Not Installed		4.07	2.38	390.28
GZ-9	10	3.5	13.5	OB	Road Box	396.84	397.18	393.68	383.68		Not Installed		4.74	5.08	392.10
GZ-9I	5	21.0	26.0	OB	Road Box	396.56	396.99	375.99	370.99		Not Installed		4.68	5.10	391.88
GZ-10	10	3.0	13.0	OB/WBR	Stand Pipe	395.58	392.95	389.95	379.95		Not Installed		5.62	2.98	389.96
GZ-11	10	3.5	13.5	ОВ	Road Box	393.63	394.41	390.91	380.91		Not Installed		4.00	4.78	389.63
GZ-11I	5	19.5	24.5	BR	Road Box	394.24	394.59	375.09	370.09		Not Installed		3.96	4.31	390.28
SG-1						393.74					Not Installed		2.81		390.28
SG-2						393.17					Not Installed		2.89		390.28
SG-3						390.92					Not Installed		3.40		390.28
Bridge						401.54					Not Installed		12.51		389.03

Notes:

- 1. Depth to water was measured on the above dates using an electric water level meter.
- 2. Elevations were measured by Alfred Benesch & Company on December 7, 2020 and are referenced to feet above sea level.
- 3. The depth to groundwater in Site monitoring wells was measured relative to the top of the PVC riser pipe.
- 4. Monitoring wells are constructed of 2-inch diameter schedule 40 PVC well screen and riser.
- 5. Depth to groundwater is relative to the top of the PVC riser of the well.
- 6. OB = Overburden, WBR = Weathered Bedrock & BR = Bedrock

Table 2 Southern Field - Soil Sampling Data Cherry Brook Elementary School Canton, Connecticut

				Location			Sha	llow & Deep (Co-Located Samp	oles			Shal	low & Deep C	o-Located San	nples	S	Shallow		Shallow	& Deep Co-Locat	ed Samples			Shallo	w & Deep Co	o-Located Samples			
	Parameters R-DEC 1/C-DEC Total Mass Total Mass Total Mass Total Mass Id (PFOA) Id (PFOA) μg/Kg μg/Kg Dicit acid (PFOS) Sum of Sum of		S Criteria		Sample ID	G	Z-8	G	'-D-9	GZ-D-	-12	GZ-D)-12	G	Z-9	GZ	Z-D-7		GZ-10	GZ	-11	GZ-D-10	G	Z-D-10	GZ-12	GZ-:	12R	GZ-12R	- 0	GZ-D-8
Parameters					Depth Interval	GZ-8	(0-3")	GZ-D	-9 (3-5')	GZ-D-12	(4-6')	GZ-D-1	2(4-6')	GZ-9	(0-3")	GZ-D-	-7 (3-5')	GZ-	'-10 (0-3")	GZ-11	(0-3")	GZ-D-10(4-	6') GZ-E	0-10(4-6')	GZ-12 (0-3")	GZ-12R	(0.5-2")	GZ-12R (0.5-2")	GZ-	-D-8 (3-5')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	02/17	7/2020	03/3	1/2020	07/16/2	2020	07/16,	/2020	02/17	//2020	03/3	1/2020	02,	/17/2020	02/17	7/2020	07/16/202	20 07/	16/2020	02/17/2020	07/16	/2020	07/16/2020	03/	/31/2020
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug	/Kg	u,	g/Kg	ug/K	(g	ug.	/L	ug	/Kg	uį	g/Kg		ug/Kg	ug	/Kg	ug/Kg		ug/L	ug/Kg	ug/	/Kg	ug/L		ug/Kg
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type		N		N	N		SPI	LP		N		N		N	1	N	N		SPLP	N	1	N	SPLP		N
Perfluorooctanoic acid (PFOA)						< 1.3	U	0.74	J	< 1.08	U	0.0111		0.34	J	0.41	J	< 1.2	U	0.4	J	< 1	U 0.0133		0.58 J	< 0.982	U	< 0.005 U	< 1.1	U
erfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		1.1	J	1.3		1.42		0.00911		1.2	J	0.66	J	0.38	J	0.61	J	< 1	U 0.00994	1	1.6	< 0.982	U	0.0056	< 1.1	U
erfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		< 1.3	U	0.48	J	< 1.08	U	< 0.005	U	0.35	J	< 1.2	U	< 1.2	U	0.33	J	< 1	U < 0.005	U	0.52 J	< 0.982	U	< 0.005 U	< 1.1	U
Perfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		< 1.3	U	0.28	J	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	0.28 J	< 0.982	U	< 0.005 U	< 1.1	U
erfluorohexanesulfonic acid (PFHxS)						< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		1.10		2.80		1.42		0.02		1.89		1.07		0.38		1.34		0.00	0.02		2.98	0.00	1	0.01	0.00	
Other PFAS Compounds Not on APS List																														
1-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 2.7	U	< 2.5	U	< 1.08	U	< 0.005	U	< 2.6	U	< 2.4	U	< 2.3	U	< 2.6	U	< 1	U < 0.005	U	< 2.6 U	< 0.982	U	< 0.005 U	< 2.3	U
,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 2.7	U	< 2.5	U	< 1.08	U	< 0.005	U	< 2.6	U	< 2.4	U	< 2.3	U	< 2.6	U	< 1	U < 0.005	U	< 2.6 U	< 0.982	U	< 0.005 U	< 2.3	U
-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	NC	NC	NC		< 2.7	U	< 2.5	U	< 1.08	U	< 0.005	U	< 2.6	U	< 2.4	U	< 2.3	U	< 2.6	U	< 1	U < 0.005	U	< 2.6 U	< 0.982	U	< 0.005 U	< 2.3	U
Hexafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 5.3	U	< 5	U	< 10.8	U	< 0.125	U	< 5.1	U	< 4.8	U	< 4.7	U	< 5.1	U	< 10	U < 0.125	U	< 5.2 U	< 9.82	U	< 0.125 U	< 4.6	U
I-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
I-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
erfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	0.24	J	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
Perfluorobutanoic Acid (PFBA)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
Perfluorodecanoic acid (PFDA)	NC	NC	NC	NC		0.35	J	0.43	J	< 1.08	U	< 0.005	U	0.38	J	< 1.2	U	< 1.2	U	0.47	J	< 1	U < 0.005	U	0.51 J	< 0.982	U	< 0.005 U	< 1.1	U
Perfluorodecanesulfonic Acid (PFDS)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
Perfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		< 1.3	U	0.28	J	< 1.08	U	< 0.005	U	< 1.3	U	< 1.2	U	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
erfluoropentanoic Acid (PFPeA)	NC	NC	NC	NC		< 1.3	U	0.33	J	< 1.08	U	0.00504	•	< 1.3	Ü	< 1.2	Ü	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
erfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	Ü	< 1.3	Ü	< 1.2	Ü	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
erfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		< 1.3	U	< 1.3	U	< 1.08	U	< 0.005	Ü	< 1.3	Ü	< 1.2	Ü	< 1.2	U	< 1.3	U	< 1	U < 0.005	U	< 1.3 U	< 0.982	U	< 0.005 U	< 1.1	U
erfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		< 1.3	U	0.28	J	< 1.08	U	< 0.005	U	0.33	J	< 1.2	U	< 1.2	U	0.34	J	< 1	U < 0.005	U	0.26 J	< 0.982	U	< 0.005 U	< 1.1	U

					Location		De	ер			Shallo	ow			Sh	nallow		Shallow	Southern Field			Shallow & Deep Co	-Located Samples				Shal	low		Shallow
		RSR - AP	S Criteria		Sample ID	G7-D-11	GZ-D-11	GZ-D-11	G7-D-11	G7-23	G7-23	G7-23	G7-23	G7-24	G7-24	G7-24	G7-24	G7-37	G7-37	GZ-1	015	G7-101S	G7-101D		GZ-101D	G7-10	025	GZ-102S	GZ-103S	G7-103S
Parameters					Depth Interval	GZ-D-11(4-6')	GZ-D-11(4-6)		SZ-D-11(4-6)	GZ-23 (0.5-2)	GZ-23 (0.5-2) G	Z-23 (0.5-2)	GZ-23 (0.5-2)	GZ-24 (0.5-2)	GZ-24 (0.5-2	2) GZ-24 (0.5-2)	GZ-24 (0.5-2)	GZ-37 (1.0-2.0)	GZ-37	GZ-101		GZ-101S (0-1')	GZ-101D (2-3.)	7')	GZ-101D (2-3.7')	GZ-102S	(0-2')	GZ-102S (0-2')	GZ-103S (0-2')	GZ-103S (0-2')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020 0	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	08/24/2020	08/24/2020	4/1/2	2021	4/1/2021	4/1/2021		4/1/2021	4/1/2	021	4/1/2021	4/1/2021	4/1/2021
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/Kg	ug/Kg	ug/L	ug/L	ug/Kg	ug/Kg	ug/L	ug/L	ug/Kg	ug/Kg	ug/L	ug/L	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/L ug/L	ug/Kg ug	/Kg	ug/L ug/L	ug/Kg	ug/Kg	ug/L ug/L	ug/Kg ug/K	g ug/L ug/L
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	N	N	SPLP	SPLP	N	N	SPLP	SPLP	N	N	SPLP	SPLP	N	N	N	N	SPLP SPLP	N I	N :	SPLP SPLP	N	N	SPLP SPLP	N N	SPLP SPLP
Perfluorooctanoic acid (PFOA)						< 1.05	U	0.00948		< 1.01	U	< 0.005	U	< 1.1	U	0.0198		< 1.07	U	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	1.76		0.0353	1.15	0.025
Perfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		< 1.05	U	0.0134		< 1.01	U	< 0.005	U	2.82		0.00955		2.06	F	< 0.292	U	0.00189	<0.556 l	U < 0	0.00192 U	3.53		0.0145	1.13 F	0.00802
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	0.00909		< 1.07	U	< 0.292	U	<0.00175 U	<0.278 l	U < 0	0.00192 U	0.408		0.00557	< 0.295 U	0.00436
Perfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	0.0105		< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	0.446		0.00936	0.323	0.00767
Perfluorohexanesulfonic acid (PFHxS)						< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	< 0.291	U	<0.00174 U	<0.295 U	< 0.00179 U
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		0.00		0.02		0.00		0.00		2.82		0.05		2.06		ND		0.00	ND	(0.00	6.14		0.06	2.60	0.05
Other PFAS Compounds Not on APS List																														
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U		U		Į	U						-
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U		U		Į	U						-
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U		U		Į	U						
Hexafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 10.5	U	< 0.125	U	< 10.1	U	< 0.125	U	< 11	U	< 0.125	U	< 10.7	U		U		l	U						
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.584	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	< 0.581	U	<0.00174 U	< 0.591 U	< 0.00179 U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	1.34	F	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	< 0.581	U	<0.00174 U	< 0.591 U	< 0.00179 U
Perfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	< 0.291	U	0.0071	< 0.295 U	0.00317
Perfluorobutanoic Acid (PFBA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	< 0.291	U	0.0042	< 0.295 U	0.00344
Perfluorodecanoic acid (PFDA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	0.482		<0.00174 U	< 0.591 U	< 0.00179 U
Perfluorodecanesulfonic Acid (PFDS)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	1.1		<0.00174 U	< 0.591 U	< 0.00179 U
Perfluorohexanoic acid (PFHxA)	NC	NC	NC	NC	J	< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	< 0.581	U	0.00827	< 0.591 U	0.00706
Perfluoropentanoic Acid (PFPeA)	NC	NC	NC	NC	J	< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	0.00961		< 1.07	U	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	< 0.581	U	0.0063	< 0.591 U	0.0434
Perfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC	J	< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	< 0.581	U	<0.00174 U	< 0.591 U	< 0.00179 U
Perfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		< 1.05	U	< 0.005	U	< 1.01	U	< 0.005	U	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556 l	U < 0	0.00192 U	< 0.581	U	<0.00174 U	< 0.591 U	< 0.00179 U
Perfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		< 1.05	Ü	< 0.005	U	< 1.01	U	< 0.005	Ü	< 1.1	U	< 0.005	U	< 1.07	U	< 0.292	U	<0.00175 U	<0.556	U < 0	0.00192 U	< 0.581	U	<0.00174 U	< 0.591 U	< 0.00179 U

- > RDEC: Residential Direct Exposure Criterion
 > I/C DEC: Industrial/Commerical Direct Exposure Criterion
 > GA-PMC: GA Pollutant Mobility Criterion
 > 10x GWPC-10 times the Groundwater Pollution Criteria
 > NC-No Criteria
 > µg/Kg- micro-grams per kilogram or parts per billion (ppb)
 > µg/L micro-grams per kilogram or parts per billion (ppb)

- Bold Green cells indicates exceedance of GA-PMC
 A red cell indicates Residential Direct Exposure Criterion Exceedance
 A highlighted cell indicates Industrial/ Commerical Direct Exposure Criterion Exceedance
 Bold Blue Cell indicates exceedance of the 10X GWPC
 J Estimated value
 U Not detected, below Method Detection Limit
 N total mass analyses
 SPLP Synthetic Precipitation Leaching Procedure

Table 3 Eastern Field - Soil Sampling Data **Cherry Brook Elementary School** Canton, Connecticut

					Location			Shallow & Deep Co-	Located Samples				GZ D-3 (d	eep) Located b	etween GZ-	2 & GZ-3 (sh	nallow)		Sh	nallow & Dee	p Co-Located San	ples	G	Z D-2 (deep) Located be	tween GZ-5	& GZ-6 (shallo	w)	Shallc	ow & Deep Co-Lo	ocated Samp	ples
		RSR - AI	PS Criteria		Sample ID	GZ-	-1	GZ-1R	GZ-1R	GZ-D	-5	GZ-2		GZ-D-3		GZ-3	G.	Z-3	GZ	Z-4	GZ-I)-1	G	Z-5	G	Z-D-2	G ⁻	Z-6	G.	Z-7	GZ-	'-D-4
Parameters					Depth Interval	GZ-1 (0-3")	GZ-1R (0.5-2'	GZ-1R (0.5-2')	GZ-D-5	(3-5')	GZ-2 (0-3	3") (GZ-D-3 (3-5')		3 (0-3")	-)-3") DUP	GZ-4	(0-3")	GZ-D-1	(3-5')	GZ-5	(0-3")	GZ-D	-2 (3-5')	GZ-6	(0-3")	GZ-7	` '	GZ-D-4	-4 (3-5')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	02/17/	2020	07/16/2020	07/16/2020	03/31/2	2020	02/17/20	020	03/26/2020	02/1	17/2020	02/17	7/2020	02/17	7/2020	03/26/	2020	02/1	7/2020	03/2	6/2020	02/17	7/2020	02/17	/2020	03/26	6/2020
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/	Kg	ug/Kg	ug/L	ug/k	(g	ug/Kg		ug/Kg	u	g/Kg	ug	g/Kg	ug/	/Kg	ug/	(g	ug	g/Kg	u	g/Kg	ug	g/Kg	ug	/Kg	ug/	g/Kg
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	N		N	SPLP	N		N		N		N		N	N	N	N			N		N		1	1	N	N	Ν
Perfluorooctanoic acid (PFOA)						5.7		2.77	0.0904	2.7		5		1 J	1.9		2		0.29	J	0.22	J	0.81	J	< 0.95	U	1.8	1	4.1		1.5	
Perfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		230		88.6	0.684	270		21	1	.0	5.8		5.5		1.4		0.24	J	1.2		0.19	J	5.3	1	89		7.2	
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		59		8.77	0.203	45		11	3	.4	4.1		3.5		0.48	J	< 1.2	U	2		< 0.95	U	3.8	1	19		6.7	
Perfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		4.9		3.79	0.146	2		1.9	0.	38 J	0.71	J	0.76	J	< 1.3	U	< 1.2	U	0.33	J	< 0.95	U	0.7	J	3.8		1.3	
Perfluorohexanesulfonic acid (PFHxS)						33		13.6	0.455	18		1.9	0.	37 J	0.35	J	0.31	J	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	< 1.3	U	15		0.8	J
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		332.60		117.53	1.58	337.70		40.80	15	.15	12.86		12.07		2.17		0.46		4.34		0.19		11.60	1	130.90	1 7	17.50	
Other PFAS Compounds Not on APS List																																
1-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 2.8	U	< 1.1	J < 0.00181 U	< 2.4	U	< 2.7	U < 2	2.3 U	< 2.3	U	< 2.5	U	< 2.7	U	< 2.4	U	< 2.4	U	< 1.9	U	< 2.7	U	< 2.7	U	< 2.3	U
I,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 2.8	U	< 1.1	J < 0.00181 U	< 2.4	U	< 2.7	U < 2	2.3 U	< 2.3	U	< 2.5	U	< 2.7	U	< 2.4	U	< 2.4	U	< 1.9	U	< 2.7	U	< 2.7	U	< 2.3	U
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	NC	NC	NC	NC		< 2.8	U	< 1.1	J < 0.00181 U	< 2.4	U	< 2.7	U < 2	2.3 U	< 2.3	U	< 2.5	U	< 2.7	U	< 2.4	U	< 2.4	U	< 1.9	U	< 2.7	U	< 2.7	U	< 2.3	U
Hexafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 5.6	U	< 11	J < 0.0453 U	< 4.9	U	< 5.4	U < 4	4.6 U	< 4.6	U	< 5	U	< 5.4	U	< 4.7	U	< 4.8	U	< 3.8	U	< 5.4	U	< 5.4	U	< 4.6	U
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 1.4	U	< 1.1	< 0.00181 U	< 1.2	U	< 1.4	U < 1	1.1 U	< 1.2	U	< 1.3	U	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	< 1.3	U	< 1.3	U	< 1.1	U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 1.4	U	< 1.1	< 0.00181 U	< 1.2	U	< 1.4	U < 1	1.1 U	< 1.2	U	< 1.3	U	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	< 1.3	U	< 1.3	U	< 1.1	U
Perfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		0.65	J	< 1.1	0.0197	0.33	J	< 1.4	U < 1	1.1 U	< 1.2	U	< 1.3	U	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	< 1.3	U	0.5	J	< 1.1	U
Perfluorodecanoic acid (PFDA)	NC	NC	NC	NC		19		13.4	0.13	6.1		7.5	0.	81 J	1.8		2.1		0.43	J	< 1.2	U	0.66	J	< 0.95	U	3.5	1	17		1.4	
Perfluorododecanoic acid (PFDoA)	NC	NC	NC	NC	1	6.1		4.7	0.00398	0.91	J	1.4	< 1	1.1 U	0.3	J	0.34	J	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	0.44	J	4.4		0.26	J
Perfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		3.9		2.84	0.119	2.1		0.97	J O.	27 J	0.59	J	0.67	J	< 1.3	U	< 1.2	U	0.31	J	< 0.95	U	0.5	J	2.9		0.97	J
Perfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		1.4		1.69	< 0.00181 U	< 1.2	U	0.28	J < 1	1.1 U	< 1.2	U	< 1.3	U	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	< 1.3	U	1.1	J	< 1.1	U
Perfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		32		13.2	0.00633	3.8		1.1	J < 1	1.1 U	0.26	J	0.25	J	< 1.3	U	< 1.2	U	< 1.2	U	< 0.95	U	0.41	J	4.5		0.25	J
Perfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		140		24.7	0.0772	16		9.4	0.	56 I	2.1		2.5		0.57	1	< 1.2	U	0.79	1	< 0.95	U	4.1	í	19		1.2	

					Location	Shallow & Dee	ep Co-Located Samples		Shallow & Deep	Co-Located Samples		Shallow	Shallow			Shallow & D	eep Co-Located Samples			Shallow & Deep	Co-Located Samples	
		RSR - AI	PS Criteria		Sample ID	GZ-13	GZ-D-6	GZ-17	GZ-17	GZ-D-13	GZ-D-13	GZ-14	GZ-15	GZ-	19	GZ-19	GZ-D-15	GZ-D-15	GZ-18	GZ-18	GZ-D-14	GZ-D-14
CT DEEP Additional Polluting Substances (APS) for PFAS erfluorooctanoic acid (PFOA)					Depth Interval	GZ-13 (0-0.25')	GZ-D-6 (3-5')	GZ-17 (0.5-2')	GZ-17 (0.5-2')	GZ-D-13(4-6')	GZ-D-13(4-6')	GZ-14 (0-0.25')	GZ-15 (0-0.25')	GZ-19 (0.5-2')	GZ-19 (0.5-2) GZ-D-15(4-6')	GZ-D-15(4-6')	GZ-18 (0.5-2')	GZ-18 (0.5-2')	GZ-D-14(4-6')	GZ-D-14(4-6')
R- Total CT DEEP Additional Polluting Substances (APS) for PFAS με		I/C-DEC	GA-PMC	10X GWPC	Date Sampled	03/26/2020	03/26/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	03/26/2020	03/26/2020	07/16/	/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020
Pol		Total Mass	Total Mass	SPLP	Units	ug/Kg	ug/Kg	ug/Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/Kg	ug/	Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/L
Tota CT DEEP Additional Polluting Substances (APS) for PFAS uorooctanoic acid (PFOA) uorooctanesulfonic acid (PFOS) Su		μg/Kg	μg/Kg	μg/L	Analysis Type	N	N	N	SPLP	N	SPLP	N	N	N		SPLP	N	SPLP	N	SPLP	N	SPLP
erfluorooctanoic acid (PFOA)						8.4	6.7	1.97	0.0524	1.85	0.0595	2.6	0.56 J	< 1.11	U	0.0218	< 1.1 U	0.0237	< 1.13 U	0.0205	1.11	0.0368
erfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		4.7	3	18.4	0.13	4.64	0.0543	6.5	1.3 J	1.29		0.0038	< 1.1 U	0.00521	1.57	0.00283	< 1.05 U	0.0144
erfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		24	24	4.08	0.0694	2.78	0.0711	5.2	1.6	2.16		0.0192	< 1.1 U	0.00732	2.17	0.0157	< 1.05 U	0.0232
erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		4.7	6	1.8	0.0656	1.52	0.0596	2.7	< 1.6 U	< 1.11	U	0.017	< 1.1 U	0.0401	< 1.13 U	0.0153	< 1.05 U	0.0309
erfluorohexanesulfonic acid (PFHxS)						< 1.5	U < 1.2 U	2.38	0.0742 F	< 1.01 U	0.0256 F	2.5	< 1.6 U	< 1.11	U	0.00403	< 1.1 U	0.00356 F	< 1.13 U	0.00496 F	1.12	0.0416
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		41.80	39.70	28.63	0.39	10.79	0.27	19.50	3.46	3.45		0.07	0.00	0.08	3.74	0.06	2.23	0.15
ther PFAS Compounds Not on APS List																						
1-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 3	U < 2.4 U	< 1.09 U	< 0.00174 U	< 1.01 U	< 0.005 U	< 3.4 U	< 3.1 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 3	U < 2.4 U	< 1.09 U	< 0.00174 U	< 1.01 U	< 0.005 U	< 3.4 U	< 3.1 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	NC	NC	NC		< 3	U < 2.4 U	< 1.09 U	< 0.00174 U	< 1.01 U	< 0.005 U	< 3.4 U	< 3.1 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
lexafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 5.9	U < 4.8 U	< 10.9 U	< 0.0434 U	< 10.1 U	< 0.125 U	< 6.8 U	< 6.3 U	< 11.1	U	< 0.0443	U < 11 U	< 0.0442 U	< 11.3 U	< 0.0437 U	< 10.5 U	< 0.0456 U
I-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 1.5	U < 1.2 U	< 1.09 U	< 0.00174 U	< 10.1 U	< 0.005 U	< 1.7 U	< 1.6 U	< 1.11	U	< 0.00177	U < 11 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 11 U	< 0.00182 U
I-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 1.5	U < 1.2 U	< 1.09 U	< 0.00174 U	< 10.1 U	< 0.005 U	< 1.7 U	< 1.6 U	< 1.11	U	< 0.00177	U < 11 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 11 U	< 0.00182 U
erfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		< 1.5	U < 1.2 U	< 1.09 U	0.00537	< 1.01 U	< 0.005 U	< 1.7 U	< 1.6 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	0.00276
erfluorodecanoic acid (PFDA)	NC	NC	NC	NC		14	6.6	7.17	0.0398	1.03	0.0107	2.8	0.63 J	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	0.00302
erfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		2.2	0.49 J	1.41	< 0.00174 U	< 1.01 U	< 0.005 U	0.68 J	< 1.6 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
erfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		2.1	2.2	1.28	0.0523	1.3	0.0501	1.4 J	< 1.6 U	< 1.11	U	0.0129	< 1.1 U	0.0251	< 1.13 U	0.0123	< 1.05 U	0.0264
erfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		0.51	J < 1.2 U	< 1.09 U	< 0.00174 U	< 1.01 U	< 0.005 U	< 1.7 U	< 1.6 U	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
erfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		1.4	J 0.27 J	2.37	< 0.00174 U	< 1.01 U	< 0.005 U	4.9	< 1.6 U	< 1.11	U	< 0.00177	U <1.1 U	< 0.00177 U	< 1.13 U	< 0.00175 U	< 1.05 U	< 0.00182 U
erfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		13	2.7	11.2	0.0149	1.23	< 0.005 U	7.9	1.1 J	< 1.11	U	< 0.00177	U < 1.1 U	< 0.00177 U	1.48	< 0.00175 U	< 1.05 U	< 0.00182 U

Notes

- > RDEC: Residential Direct Exposure Criterion
- > I/C DEC: Industrial/Commercial Direct Exposure Criterion
- > GA-PMC: GA Pollutant Mobility Criterion > 10x GWPC - 10 times the Groundwater Pollution Criteria
- > NC-No Criteria
- $> \mu g/Kg$ micro-grams per kilogram or parts per billion (ppb)
- $> \mu g/L$ micro-grams per kilogram or parts per billion (ppb)
- > Bold Green cells indicates exceedance of GA-PMC and 10X GWPC
- > A red cell indicates Residential Direct Exposure Criterion Exceedance
- > A highlighted cell indicates Industrial/ Commercial Direct Exposure Criterion Exceedance
 > Bold Blue Cell indicates exceedance of the 10X GWPC
- > J- Estimated value
- > U- Not detected, below Method Detection Limit
- > N total mass analyses
- > SPLP Synthetic Precipitation Leaching Procedure

Table 3 Eastern Field - Soil Sampling Data Cherry Brook Elementary School Canton, Connecticut

					Location	Shallo	W		Shallow & Deep	Co-Located Samples			Shallow & D	eep Co-Located Samples			Sh	allow & Deep	Co-Located S	amples		
		RSR - AP	S Criteria		Sample ID	GZ-16	GZ-16	GZ-20	GZ-20	GZ-D-16	GZ-D-16	GZ-21	GZ-21	GZ-D-17	GZ-D-17	GZ	7-22	GZ-22	GZ-D	<i>i</i> -18	GZ-D-18	18
Parameters					Depth Interval	GZ-16 (0.5-2')	GZ-16 (0.5-2')	GZ-20 (0.5-2')	GZ-20 (0.5-2')	GZ-D-16(4-6')	GZ-D-16(4-6')	GZ-21 (0.5-2')	GZ-21 (0.5-2')	GZ-D-17(4-6')	GZ-D-17(4-6')	GZ-22	(0.5-2') GZ-2	2 (0.5-2')	GZ-D-18	3(4-6')	GZ-D-18(4	4-6')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/17/2020	07/17/2020	07/16	5/2020 07/2	16/2020	07/20/	2020	07/20/20	020
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/L	ug/Kg	ug/L	ug,	/Kg	ug/L	ug/	Kg	ug/L	
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	N	SPLP	N	SPLP	N	SPLP	N	SPLP	N	SPLP	1	N S	SPLP	N		SPLP	
erfluorooctanoic acid (PFOA)						< 1.1 U	0.0254	4.48	0.128	4.98	0.182	4.88	0.109	< 1.06 U	0.0284	< 0.988	U 0.0132		1.33		0.0373	
erfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		1.66	0.00713	39.6	0.291	4.77	0.0762	30	0.122	15.8	0.157	1.86	0.0091		1.1		0.00707	
erfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		1.3	0.0166	16.8	0.308	15.2	0.441	9.62	0.116	3.63	0.0634	< 0.988	U 0.0162		< 1.01	U	0.0101	
erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		< 1.1 U	0.0149	2.07	0.0848	3.15	0.131	1.89	0.063	< 1.06 U	0.022	< 0.988	U 0.00743		< 1.01	U	0.0242	
erfluorohexanesulfonic acid (PFHxS)						< 1.1 U	0.0106	2.6	0.0869 F	1.52	0.0536 F	1.71	0.0445 F	< 1.06 U	0.016 F	< 0.988	U 0.0029	F	< 1.01	U	0.00942	
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		2.96	0.07	65.55	0.90	29.62	0.88	48.10	0.45	19.43	0.29	1.86	0.05		2.43		0.09	
ther PFAS Compounds Not on APS List																						
1-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 0.97 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 0.97 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 0.97 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
exafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 11 U	< 0.0463 U	< 11 U	< 0.0454 U	< 9.7 U	< 0.125 U	< 11.8 U	< 0.0463 U	< 10.6 U	< 0.0447 U	< 9.88	U < 0.0456	U	< 10.1	U	< 0.0442	U
-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 9.7 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 9.7 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	<u>U</u>	< 1.01	U	< 0.00177	U
erfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	0.00369	< 0.97 U	< 0.005 U	< 1.18 U	0.00209	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	<u>U</u>	< 1.01	U	< 0.00177	U
erfluorodecanoic acid (PFDA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	5.78	0.0317	1.43	0.0162	4.62	0.0165	1.16	0.00802	< 0.988	U 0.00348		< 1.01	U	< 0.00177	U
erfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 0.97 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	<u>U</u>	< 1.01	U	< 0.00177	U
erfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		< 1.1 U	0.013	1.52	0.0672	1.77	0.0765	< 1.18 U	0.0428	< 1.06 U	0.0158	< 0.988	U 0.00578		< 1.01	U	0.0172	
erfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	< 1.1 U	< 0.00182 U	< 0.97 U	< 0.005 U	< 1.18 U	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
erfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	7.26	0.0026	< 0.97 U	< 0.005 U	1.31	< 0.00185 U	< 1.06 U	< 0.00179 U	< 0.988	U < 0.00182	2 U	< 1.01	U	< 0.00177	U
erfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		< 1.1 U	< 0.00185 U	60.2	0.0534	4.24	0.00735	7.58	0.00544	1.11	< 0.00179 U	< 0.988	U < 0.00182) U	< 1.01	U	< 0.00177	U

					Location	Shallow & Deep C	o-Located Samples	S	Shallow & [Deep Co-	-Located Samples	Shallow & Deep	Co-Located Samples	Shallo	w & Deep C	o-Located Sa	mples	Shallow & D	eep Co-Located Sar	nples	Shallov	и & Deep C	Co-Located Samp	oles	Sha	allow
		RSR - AP	S Criteria		Sample ID	GZ-30	GZ-D-3	30	GZ-3:	1	GZ-D-31	GZ-32	GZ-D-32	GZ	-33	GZ-D	-33	GZ-34	GZ-D)-34	GZ-3	35	GZ-D-3	35	G7	iZ-36
Parameters					Depth Interval	GZ-30 (0.5-2.0')	GZ-D-30 ((4-6')	GZ-31 (0.5	5-2.0')	GZ-D-31 (4-6')	GZ-32 (0.5-2.0')	GZ-D-32 (5-7')	GZ-33 (0.5-2.0')	GZ-D-33	(4-5.5')	GZ-34 (0.5-2.0')	GZ-D-3	4 (4-6')	GZ-35 (0.	ı.5-2.0')	GZ-D-35 ((4-6')	GZ-36 ((0.5-2.0
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	08/24/2020	08/24/2	2020	08/24/2	2020	08/24/2020	08/24/2020	08/24/2020	08/24	/2020	08/24/	2020	08/24/2020	08/24	/2020	08/24/	/2020	08/24/20	020	08/2/	24/2020
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/L	ug/L	-	ug/L	-	ug/L	ug/L	ug/L	uĮ	g/L	ug/	Ľ	ug/L	ug	/L	ug/	/L	ug/L		ug	g/Kg
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	SPLP	SPLP)	SPLP)	SPLP	SPLP	SPLP	SF	LP	SPL	.P	SPLP	SP	LP	SPL	_P	SPLP		<u> </u>	N
erfluorooctanoic acid (PFOA)						0.0975	0.00215		0.0516		0.0051	0.013	0.00405	0.0756		0.0217		0.128	0.00742		0.0587		0.0261		4.35	
erfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		0.103	0.0364		0.00683		0.00331	0.00464	0.0224	3.09		0.951		2.66	0.254		1.04		0.148		2.23	
rfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		0.028	0.0111		0.0702		0.00461	0.0217	< 0.00179 U	0.23		0.12		0.298	0.0137		0.231		0.0452		< 1.03	
erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		0.154	0.00311		0.0346		0.0119	0.0138	0.00623	0.0888		0.0227		0.121	0.00734		0.0526		0.0267		5.38	
erfluorohexanesulfonic acid (PFHxS)						0.225	0.00595		0.00779		0.00347	0.026	0.036	0.404		0.138		0.277	0.0484		0.0957		0.0297		4.18	
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		0.61	0.06		0.17		0.03	0.08	0.07	3.89		1.25		3.48	0.33		1.48		0.28		16.14	
her PFAS Compounds Not on APS List																										
-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
B-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	\cup	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	1
chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
exafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC		< 0.0477 U	< 0.0475	U	< 0.046	U	< 0.0456 U	< 0.0474 U	< 0.0448 U	< 0.0471	U	< 0.0456	U	< 0.0476 U	< 0.0445	U	< 0.437	U	< 0.0476	U	< 10.3	
-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 10.3	l
erfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	0.00687	0.00741		0.00466		0.00226	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	l
erfluorodecanoic acid (PFDA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	0.00386		< 0.00182 U	< 0.0019 U	< 0.00179 U	0.0685		0.0272		0.0295	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
erfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
rfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		0.139	0.00372		0.0207		0.00485	0.0134	0.0142	0.106		0.0261		0.0819	0.0067		0.0406		0.0263		5.29	
rfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	\cup	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
rfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	< 0.00188	U	< 0.00182	U	< 0.0019 U	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	
erfluoroundecanoic Acid (PFUnA)	NC	NC	NC	NC		< 0.00191 U	< 0.0019	U	< 0.00184	U	< 0.00182 U	< 0.0019 U	< 0.00179 U	0.00603		0.00704		0.00443	< 0.00178	U	< 0.0175	U	< 0.0019	U	< 1.03	

> RDEC: Residential Direct Exposure Criterion

> I/C DEC: Industrial/Commercial Direct Exposure Criterion

> GA-PMC: GA Pollutant Mobility Criterion > 10x GWPC - 10 times the Groundwater Pollution Criteria

> NC-No Criteria

 $> \mu g/Kg\text{-}$ micro-grams per kilogram or parts per billion (ppb) $> \mu g/L$ - micro-grams per kilogram or parts per billion (ppb) > Bold - Green cells indicates exceedance of GA-PMC

> A red cell indicates Residential Direct Exposure Criterion Exceedance

> A highlighted cell indicates Industrial/ Commerical Direct Exposure Criterion Exceedance

> Bold - Blue Cell indicates exceedance of the 10X GWPC

> J- Estimated value > U- Not detected, below Method Detection Limit

> N - total mass analyses > SPLP - Synthetic Precipitation Leaching Procedure

Table 3 Eastern Field - Soil Sampling Data **Cherry Brook Elementary School** Canton, Connecticut

					Location	Shallo)W	Sha	llow		Shal	low		Shallow	& Deep Co-Located				Shallow &	Deep Co-Loca	ted		
		RSR - AP	S Criteria		Sample ID	GZ-104S	GZ-104S	GZ-105S	GZ-105S	GZ-10	6S	GZ-106S	GZ-107S	GZ-107S	GZ-107	GZ-107	GZ-	·108S (Z-108S	GZ-:	108	GZ-10	.08
Parameters					Depth Interval	GZ-104S (0-2')	GZ-104S (0-2')	GZ-105S (0-2')	GZ-105S (0-2')	GZ-106S	(0-2')	GZ-106S (0-2')	GZ-107S (0-2')	GZ-107S (0-2')	GZ-107 (3.8-5.3')	GZ-107 (3.8-5.3')	GZ-10	8S (0-2') GZ-	108S (0-2')	GZ-108	(3.5-5')	GZ-108 (3	3.5-5')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	4/1/2021	4/1/2021	4/1/2021	4/1/2021	4/1/20)21	4/1/2021	4/1/2021	4/1/2021	4/14/2021	4/14/2021	4/1,	/2021 4	/1/2021	4/14/	2021	4/14/20	.021
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/Kg	ug/L	ug/Kg	ug/L	ug/K	g	ug/L	ug/Kg	ug/L	ug/Kg	ug/L	ug	g/Kg	ug/L	ug/	Kg	ug/L	
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	N	SPLP	N	SPLP	N		SPLP	N	SPLP	N	SPLP		N	SPLP	١	I	SPLP	م
Perfluorooctanoic acid (PFOA)						3.65	0.0808	0.911	0.184	0.553		0.0117	0.855	0.0344	< 0.285 U	0.00788	1.12	0.0452		0.731		0.0344	
Perfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		8.08	0.0519	0.947	0.0456	0.474		0.00296 F	4.16	0.0738	< 0.285 U	0.0134	10.6	0.234		0.62		0.0289	
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		1.52	0.0201	0.333	0.0462	< 0.378	U	< 0.00186 U	2.1	0.0854	0.45	0.0175	2.93	0.12		< 0.267	U	0.00576	
Perfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		2.18	0.0566	0.446	0.103	< 0.378	U	0.00649	0.342	0.0149	< 0.285 U	0.00293	0.544	0.0252		0.308		0.0149	
Perfluorohexanesulfonic acid (PFHxS)						3.26	0.0665	0.726	0.186	0.653		0.0133	< 0.273 U	0.00322	< 0.285 U	< 0.00185 U	< 0.26	U 0.0056	2	< 0.267	U	0.0113	U
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		18.69	0.28	3.36	0.56	1.68		0.03	7.46	0.21	0.45	0.04	15.19	0.43		1.66		0.10	
Other PFAS Compounds Not on APS List																							
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC																			
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC																			
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	NC	NC	NC	NC																			
Hexafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC																			
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC	1	<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	< 0.757	U	< 0.0186 U	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	'7 U	< 0.267	U	< 0.00184	U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	< 0.757	U	< 0.0186 U	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluorobutanoic Acid (PFBA)	NC	NC	NC	NC		1.43	0.0334	<0.549 U	0.00748	< 0.757	U	0.00856	< 0.547 U	0.0178	<0.285 U	< 0.00185 U	< 0.52	U 0.0193		< 0.267	U	0.0057	
Perfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		<0.734 U	0.00183	<0.549 U	0.00382	< 0.757	U	0.00328	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluorodecanoic acid (PFDA)	NC	NC	NC	NC		<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	< 0.757	U	< 0.0186 U	1.03	0.0149	<0.285 U	< 0.00185 U	0.632	0.0113		< 0.267	U	< 0.00184	U
Perfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	< 0.757	U	< 0.0186 U	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		3.33	0.0908	<0.549 U	0.00784	< 0.757	U	0.00832	0.547 U	0.0119	<0.285 U	0.00355	< 0.52	U 0.0177		< 0.267	U	0.00854	
Perfluoropentanoic Acid (PFPeA)	NC	NC	NC	NC		3.39	0.0811	<0.549 U	0.00999	< 0.757	U	0.0132	< 0.547 U	0.0228	<0.285 U	0.00388	0.628	0.0288		< 0.267	U	0.0133	
Perfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	<0.757	U	< 0.0186 U	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		<0.734 U	<0.00171 U	<0.549 U	< 0.00173 U	<0.757	U	< 0.0186 U	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluoropentanesulfonic Acid (PFPeS)	NC	NC	NC	NC		<0.735 U	0.00257	<0.549 U	0.0023	<0.757	U	0.00238	< 0.547 U	< 0.00175 U	<0.285 U	< 0.00185 U	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U
Perfluoroheptanesulfonic Acid (PFHpS)	NC	NC	NC	NC		<0.734 U	0.00275	<0.549 U	< 0.00173 U	< 0.757	U	< 0.0186 U	< 0.547	< 0.00175 U	<0.285 U	< 0.00185	< 0.52	U < 0.001	77 U	< 0.267	U	< 0.00184	U

					Location			Shallow	& Deep Co-	Located					Shallow &	Deep Co-Loc	ated				9	hallow & Dee	p Co-Located			
		RSR - AP	S Criteria		Sample ID	GZ-10	9S	GZ-	-109S	GZ-109	9	GZ-109	GZ-110	OS	GZ-110S	GZ	Z-110	GZ	-110	GZ-111S	GZ-	1115	GZ-	-111	GZ-1	-111
Parameters					Depth Interval	GZ-109S	(0-2')	GZ-10	9S (0-2')	GZ-109 (3.2	2-4.7') GZ-1	.09 (3.2-4.7')	GZ-110S (0-2')	GZ-110S (0-2')	GZ-110	(3.5-5.2')	GZ-110	(3.5-5.2')	GZ-111S (0-2')	GZ-11:	S (0-2')	GZ-11:	1 (3-4.3')	GZ-111	1 (3-4.3')
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	4/1/20	21	4/1	/2021	4/14/20	21 4,	/14/2021	4/1/202	21	4/1/2021	4/14	4/2021	4/14	/2021	4/1/2021	4/1,	2021	4/14	4/2021	4/14/	1/2021
	Total Mass	Total Mass	Total Mass	SPLP	Units	ug/K	g	u	g/L	ug/Kg	5	ug/L	ug/Kg	3	ug/L	uį	g/Kg	u	g/L	ug/Kg	u	g/L	uį	g/Kg	ug	ıg/L
CT DEEP Additional Polluting Substances (APS) for PFAS	μg/Kg	μg/Kg	μg/Kg	μg/L	Analysis Type	N		S	PLP	N		SPLP	N		SPLP		N	SI	PLP	N	SI	LP		N	SP	PLP
erfluorooctanoic acid (PFOA)						6.06		0.208		1.77	0.0	563	4.06		0.184	7.68		0.238		2.23	0.0828		1.46		0.0389	
rfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of	Sum of		423		5.7		327	9.	.5	323		4.86	266		5.28		16	0.342		6.68		0.196	
rfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS		26.1		0.646		8.23	0.2	236	18.2		0.627	15.7		0.341		15.1	0.446		14.2		0.412	
erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		3.28		0.119		< 1.1	U 0.02	292	2.7		0.132	4.46	U	0.155		1.73	0.0703		< 1.19	U	0.012	
erfluorohexanesulfonic acid (PFHxS)						21.5		0.738		14.3	0.4	196	21.5		0.953	58		1.33		2.29	0.0689		< 1.19		0.0377	
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		479.94		7.41		351.30	10.	.32	369.46		6.76	351.84		7.34		37.35	1.01		22.34		0.70	
ther PFAS Compounds Not on APS List																										A .
l-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	NC	NC	NC																						
8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	NC	NC	NC																					T	
chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	NC	NC	NC																					1	
exafluoropropylene oxide dimer acid (GenX)	NC	NC	NC	NC																					<u> </u>	
-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	NC	NC	NC		< 0.602	U	< 0.00173	U	< 2.2	U < 0.0	00182 U	< 0.581	U	< 0.00175 U	< 2.17	U	< 0.00185	U	4.36 F	< 0.00172	U	< 2.39	U	< 0.00186	Į
-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC		< 0.602	U	< 0.00173	U	< 2.2	U < 0.0	00182 U	< 0.581	U	< 0.00175 U	< 2.17	U	< 0.00185	U	6.74 U	< 0.00172	U	< 2.39	U	< 0.00186	L
erfluorobutanoic Acid (PFBA)	NC	NC	NC	NC		1.09		0.0424		< 2.2	U 0.01	149	0.881		0.0396	< 2.17	U	0.0332		0.778	0.0315		< 1.19	U	0.00878	
erfluorobutanesulfonic acid (PFBS)	NC	NC	NC	NC		0.496		0.0151		< 1.1	U 0.00	0376	0.681		0.0272	1.23		0.0339		< 0.278 U	< 0.00172	U	1.23		< 0.00186	L
erfluorodecanoic acid (PFDA)	NC	NC	NC	NC		15.8		0.23		2.78	0.0	503	8.1		0.148	5.04		0.0435		0.742	0.0106		< 1.19		< 0.00186	L
erfluorododecanoic acid (PFDoA)	NC	NC	NC	NC		1.83	U	< 0.00173	U	< 2.2	U < 0.0	00182 U	1.05		< 0.00175 U	< 2.17	U	< 0.00185	U	< 0.278 U	< 0.00172	U	< 2.39	U	< 0.00186	L
erfluorohexanoic acid (PFHxA)	NC	NC	NC	NC		3.57	U	0.13		< 2.2	U 0.05	559	2.82		0.128	4.44		0.157		1.26	0.0493		< 2.39		0.00973	
erfluoropentanoic Acid (PFPeA)	NC	NC	NC	NC		3.23		0.116		< 2.2	U 0.03	329	4.08		0.182	4.88		0.173		2.16	0.0832		< 2.39		0.0177	
erfluorotetradecanoic acid (PFTA)	NC	NC	NC	NC		< 0.602	U	< 0.00173	U	< 2.2	U < 0.0	00182 U	< 0.581	U	< 0.00175 U	< 2.17	U	< 0.00185	U	< 0.278 U	< 0.00172	U	< 2.39	U	< 0.00186	Į
erfluorotridecanoic Acid (PFTriA)	NC	NC	NC	NC		1.9		< 0.00173	U	< 2.2	U < 0.0	00182 U	2.46		< 0.00175 U	< 2.17	U	< 0.00185	U	< 0.278 U	< 0.00172	U	< 2.39	U	< 0.00186	Į
erfluoropentanesulfonic Acid (PFPeS)	NC	NC	NC	NC		< 0.602	U	0.0416		< 2.2	U 0.02	249	1.28		0.0754	< 4.34	U	0.146		< 0.278 U	0.00263		< 4.78	U	< 0.00186	Į
erfluoroheptanesulfonic Acid (PFHpS)	NC	NC	NC	NC		1.86		0.0972		< 2.2	U 0.05	541	2.69		0.166	3.92		0.213		< 0.278 U	0.00683		< 2.39		0.00686	

Notes

> RDEC: Residential Direct Exposure Criterion

> I/C DEC: Industrial/Commercial Direct Exposure Criterion > GA-PMC: GA Pollutant Mobility Criterion

> 10x GWPC - 10 times the Groundwater Pollution Criteria

> NC-No Criteria

 $> \mu g/Kg$ - micro-grams per kilogram or parts per billion (ppb)

 $> \mu g/L \,$ - micro-grams per kilogram or parts per billion (ppb)

> Bold - Green cells indicates exceedance of GA-PMC

> A red cell indicates Residential Direct Exposure Criterion Exceedance
 > A highlighted cell indicates Industrial/ Commercial Direct Exposure Criterion Exceedance

> Bold - Blue Cell indicates exceedance of the 10X GWPC

> J- Estimated value

> U- Not detected, below Method Detection Limit > N - total mass analyses

> SPLP - Synthetic Precipitation Leaching Procedure

Table 4 Summary of Groundwater Analytical Results

Town of Canton 4 Barbourtown road

	RSR Criteria												Eastern F	ield										
Parameter		Units	GZ-2	2	GZ-	-2I	GZ-2	2D	GZ-	-3	GZ-4	ļ	GZ-4	ŀΙ	GZ-4	1 D	GZ-	·5	GZ	-6	GZ-	7	GZ-	.7I
CT DEEP Additional Polluting Substances (APS) for PFAS	GA-PMC		8/14/2	020	1/13/	2021	1/13/2	2021	8/14/2	2020	8/14/20	020	1/14/2	021	1/14/2	2021	1/12/2	2021	1/12/	2021	1/12/2	021	1/12/2	2021
Perfluorooctanoic acid (PFOA)		ng/L	810		280		2	J	14		260		4.5		15		4.2		< 1.0	U	2.6	J	28	
Perfluorooctanesulfonic acid (PFOS)	SUM	ng/L	7,800		58		6.5		68		820		8.2		32		11		< 1.0	U	14		20	
Perfluorononanoic acid (PFNA)	of - 5	ng/L	2,900		42		< 1.0	U	24		300		3.2	J	19		1.8	J	< 1.0	U	< 1.0	U	4.5	1
Perfluoroheptanoic acid (PFHpA)	Compounds	ng/L	1,100		370		3.9	J	21		320		6.5		15		< 1.1	U	< 1.0	U	1.2	J	31	1
Perfluorohexanesulfonic acid (PFHxS)		ng/L	4,200		180		2.2	J	33		900		18		21		< 1.1	U	< 1.0	U	15		56	i l
Sum of PFAS Compounds	70	ng/L	16,810		930		15		160		2,600		40		102		17		0		33		140	
Other PFAS Compounds Not on APS List																								
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	ng/L	< 7.5	J	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	ng/L	< 7.5	J	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	ng/L	< 7.5	U	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
Hexafluoropropylene oxide dimer acid (GenX)	NC	ng/L	< 7.5	U	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	ng/L	< 7.5	U	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	ng/L	< 7.5	U	< 2.1	U	< 2.1	U	< 7.7	U	< 7.7	U	< 2.0	U	< 1.9	U	< 2.1	U	< 2.1	U	< 2.0	U	< 2.1	U
Perfluorobutanesulfonic acid (PFBS)	NC	ng/L	200		12		< 1.0	U	2.30	J	58.00		1.9	J	2.6	J	< 1.1	U	< 1.0	U	3.5	J	4.2	1
Perfluorodecanoic acid (PFDA)	NC	ng/L	220		< 1.0	U	< 1.0	U	1.40	J	3.50	J	< 1.0	U	< 0.97	U	2.3	J	< 1.0	U	< 1.0	U	< 1.1	U
Perfluorododecanoic acid (PFDoA)	NC	ng/L	1.00	J	< 1.0	U	< 1.0	U	< 3.8	U	< 3.8	U	< 1.0	U	< 0.97	U	< 1.1	U	< 1.0	U	< 1.0	U	< 1.1	U
Perfluorohexanoic acid (PFHxA)	NC	ng/L	1,200		260		< 1.0	U	29		350		8.6		16		< 1.1	U	< 1.0	U	1.5	J	27	
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 3.8	U	< 1.0	U	< 1.0	U	< 3.8	U	< 3.8	U	< 1.0	U	< 0.97	U	< 1.1	U	< 1.0	U	< 1.0		< 1.1	U
Perfluorotridecanoic Acid (PFTriA)	NC	ng/L	< 3.8	U	< 1.0	U	< 1.0	U	< 3.8	U	< 3.8	U	< 1.0	U	< 0.97	U	< 1.1	U	< 1.0	U	< 1.0	U	< 1.1	U
Perfluoroundecanoic Acid (PFUnA)	NC	ng/L	110		< 1.0	U	< 1.0	U	< 3.8	U	1	J	< 1.0	U	< 0.97	U	< 1.1	U	< 1.0	U	< 1.0	U	< 1.1	U

Parameter	RSR Criteria				Off-Site \	Wells Eas	st of Easte	rn Field				S	outheaste	rn Field	i		Southerr	n Field
Faranietei	GA-PMC	Units	GZ-8	8	GZ-	8I	GZ-	11	GZ-:	11I	GZ	-9	GZ-9	9I	GZ-	10	GZ-	1
CT DEEP Additional Polluting Substances (APS) for PFAS	GA-PMC		1/14/2	021	1/14/2	2021	1/14/2	2021	1/14/2	2021	1/13/	2021	1/13/2	2021	1/12/2	2021	8/14/2	.020
Perfluorooctanoic acid (PFOA)		ng/L	< 1.0	U	2.8	J	< 0.99	U	2.7	J	2.5	J	2.4	J	3.7	J	< 3.8	U
Perfluorooctanesulfonic acid (PFOS)	SUM	ng/L	< 1.0	U	1.2	J	< 0.99	U	3.3	J	5.4		1.5	J	3	J	1.50	J
Perfluorononanoic acid (PFNA)	of - 5	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	1.4	J	< 0.97	U	10		1.40	J
Perfluoroheptanoic acid (PFHpA)	Compounds	ng/L	2.7	J	4.3		< 0.99	U	6.7		1.3	J	1.4	J	4	J	< 3.8	U
Perfluorohexanesulfonic acid (PFHxS)		ng/L	4.7		5.8		1.8	J	12		< 1.1	U	< 0.97	U	5.4		< 3.8	U
Sum of PFAS Compounds	70	ng/L	7		14		2		25		11		5		26		3	
Other PFAS Compounds Not on APS List																		
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
Hexafluoropropylene oxide dimer acid (GenX)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	ng/L	< 2.0	U	< 1.9	U	< 2.0	U	< 2.0	U	< 2.1	U	< 1.97	U	< 2.1	U	< 7.5	U
Perfluorobutanesulfonic acid (PFBS)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	1.3	J	1.5	J	< 0.97	U	1.2	J	< 3.8	U
Perfluorodecanoic acid (PFDA)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	< 1.1	U	< 0.97	U	< 1.1	U	4.10	I
Perfluorododecanoic acid (PFDoA)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	< 1.1	U	< 0.97	U	< 1.1	U	< 3.8	U
Perfluorohexanoic acid (PFHxA)	NC	ng/L	2.9	J	5.2		< 0.99	U	8.5		1.5	J	1.5	J	4.9		< 3.8	U
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	< 1.1	U	< 0.97	U	< 1.1	U	< 3.8	U
Perfluorotridecanoic Acid (PFTriA)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	< 1.1	U	< 0.97	U	< 1.1	U	< 3.8	U
Perfluoroundecanoic Acid (PFUnA)	NC	ng/L	< 1.0	U	< 0.97	U	< 0.99	U	< 1.0	U	< 1.1	U	< 0.97	U	< 1.1	U	< 3.8	U

Notes:

- GWPC: Groundwater Protection Criteria
 Bold cells indicate exceedance of GWPC
- 3. J- Estimated value
- 4. U- Not detected, below Method Detection Limit
- 5. ng/L nanograms per liter 6. NC-No Criteria

Table 5Summary of Surface Water Analytical Results

Town of Canton 4 Barbourtown road Canton, CT

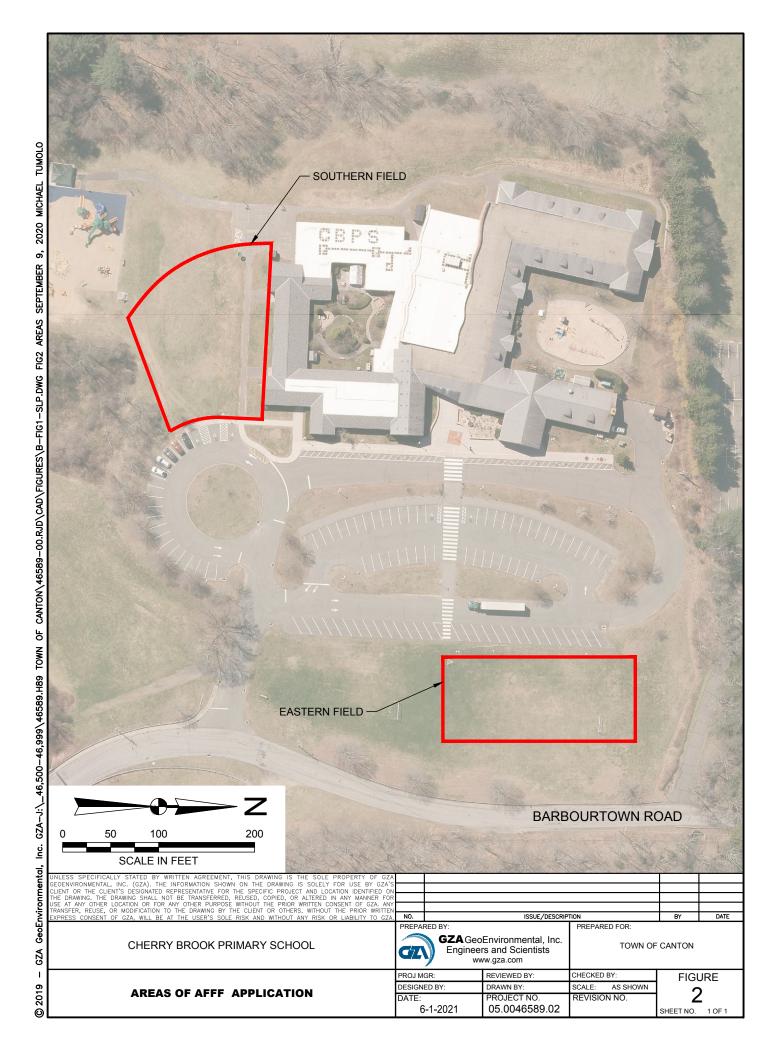
Davamatav	RSR Criteria				SW River	Samples		
Parameter	SWPC	Units	S-:	1	S-	.3	S-	5
CT DEEP Additional Polluting Substances (APS) for PFAS	SWPC		1/15/2	2021	1/15/	2021	1/15/	2021
Perfluorooctanoic acid (PFOA)		ng/L	< 0.91	U	< 0.86	U	< 0.94	U
Perfluorooctanesulfonic acid (PFOS)	SUM	ng/L	< 0.91	U	1.4	J	< 0.94	U
Perfluorononanoic acid (PFNA)	of - 5	ng/L	< 0.91	J	< 0.86	U	< 0.94	U
Perfluoroheptanoic acid (PFHpA)	Compounds	ng/L	< 0.91	J	< 0.86	U	< 0.94	U
Perfluorohexanesulfonic acid (PFHxS)		ng/L	< 0.91	J	< 0.86	U	< 0.94	U
Sum of PFAS Compounds	11	ng/L	0	0	1.4		0	
Other PFAS Compounds Not on APS List								
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	NC	ng/L	< 1.8	U	< 1.7	U	< 1.9	U
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	ng/L	< 1.8	U	< 1.7	U	< 1.9	U
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	ng/L	< 1.8	U	< 1.7	U	< 1.9	U
Hexafluoropropylene oxide dimer acid (GenX)	NC	ng/L	< 1.8	U	< 1.7	U	< 1.9	U
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	ng/L	< 1.8	U	< 1.7	U	< 1.9	U
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	ng/L	< 1.8	J	< 1.7	U	< 1.9	U
Perfluorobutanesulfonic acid (PFBS)	NC	ng/L	< 0.91	J	< 0.86	U	< 0.94	U
Perfluorodecanoic acid (PFDA)	NC	ng/L	< 0.91	J	< 0.86	U	< 0.94	U
Perfluorododecanoic acid (PFDoA)	NC	ng/L	< 0.91	J	< 0.86	J	< 0.94	U
Perfluorohexanoic acid (PFHxA)	NC	ng/L	< 0.91	U	< 0.86	U	< 0.94	U
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 0.91	U	< 0.86	U	< 0.94	U
Perfluorotridecanoic Acid (PFTriA)	NC	ng/L	< 0.91	U	< 0.86	U	< 0.94	U
Perfluoroundecanoic Acid (PFUnA)	NC	ng/L	< 0.91	U	< 0.86	U	< 0.94	U

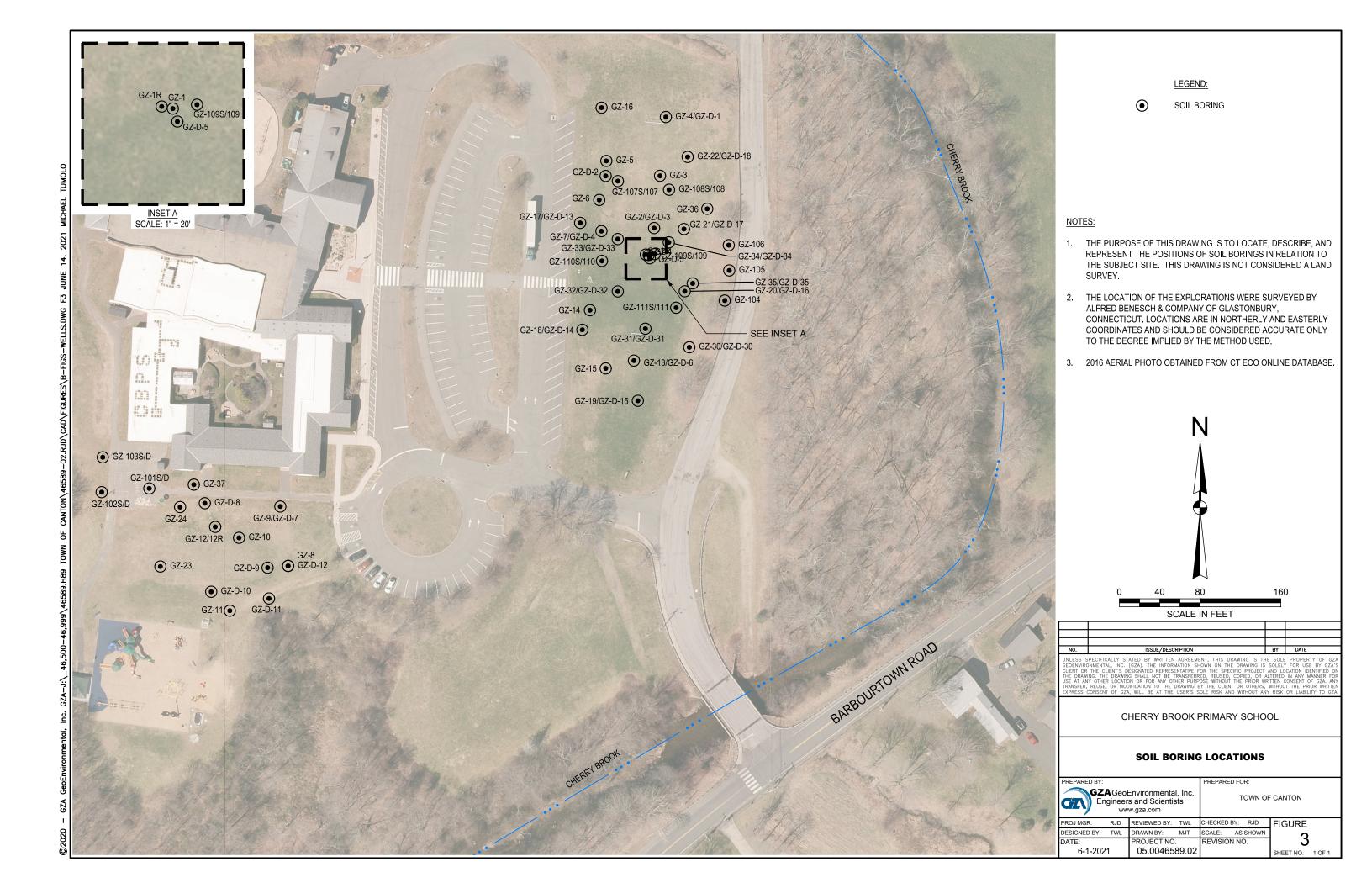
Notes:

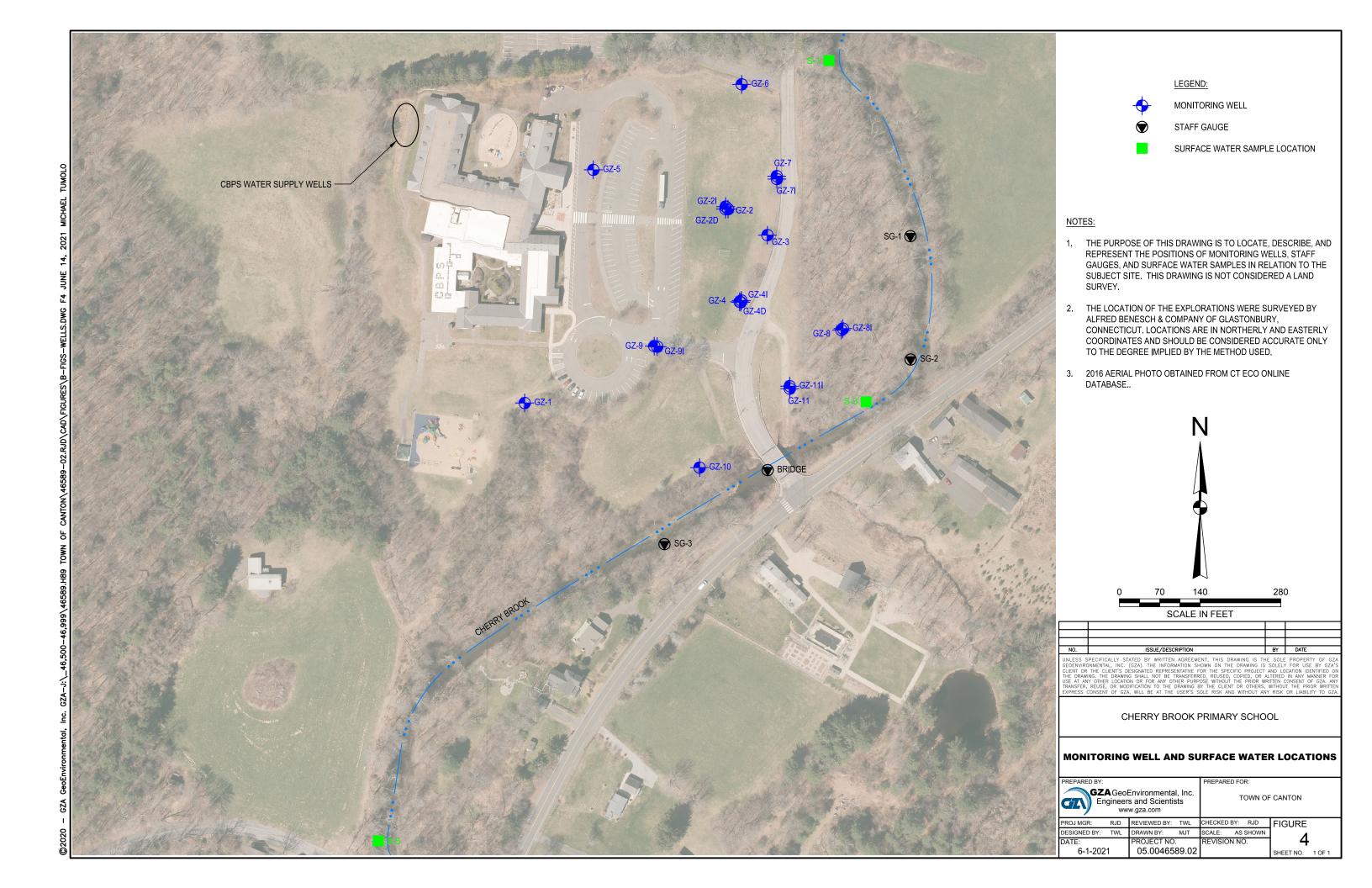
- 1. No Connecticut APS is established to date. GZA has adopted Michigan's surface water criteria for comparison purposes.
- 2. Bold cells indicate exceedance of Michigan's surface water criteria
- 3. J- Estimated value
- 4. U- Not detected, below Method Detection Limit
- 5. ng/L nanograms per liter
- 6. NC-No Criteria

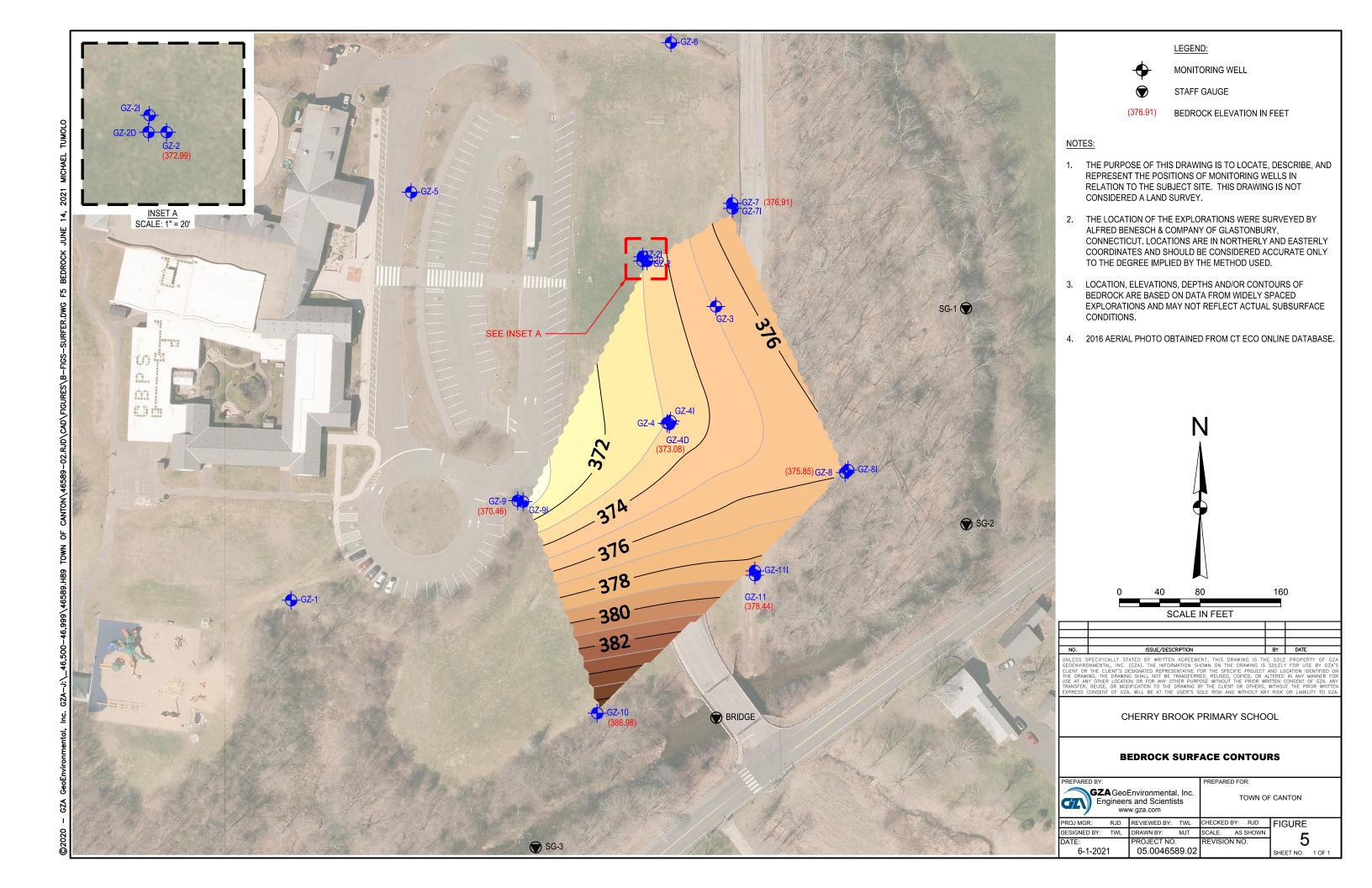
Table 6

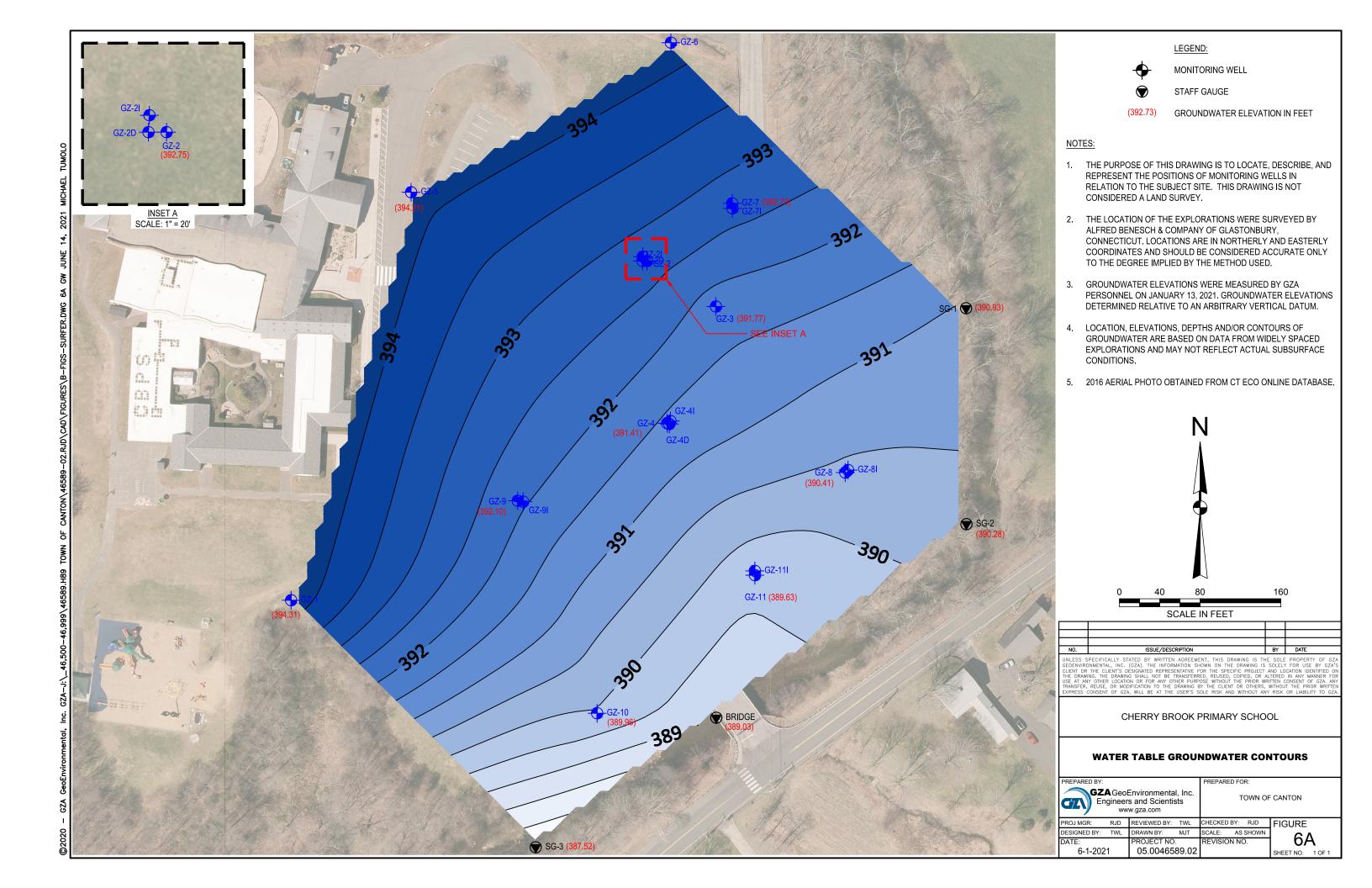
Hydraulic Conductivity and Screening Summary

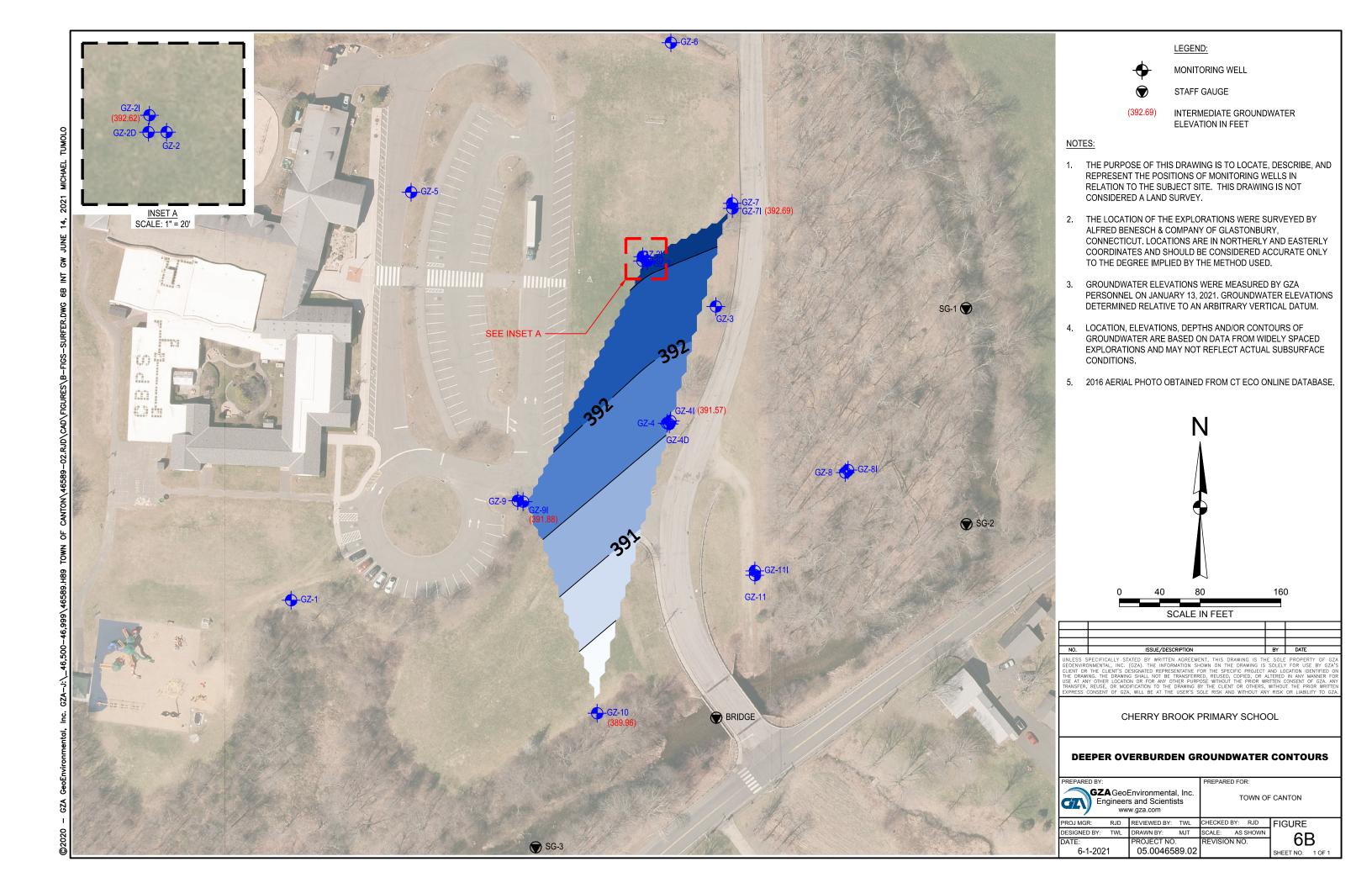

Town of Canton
4 Barbourtown road
Canton, CT

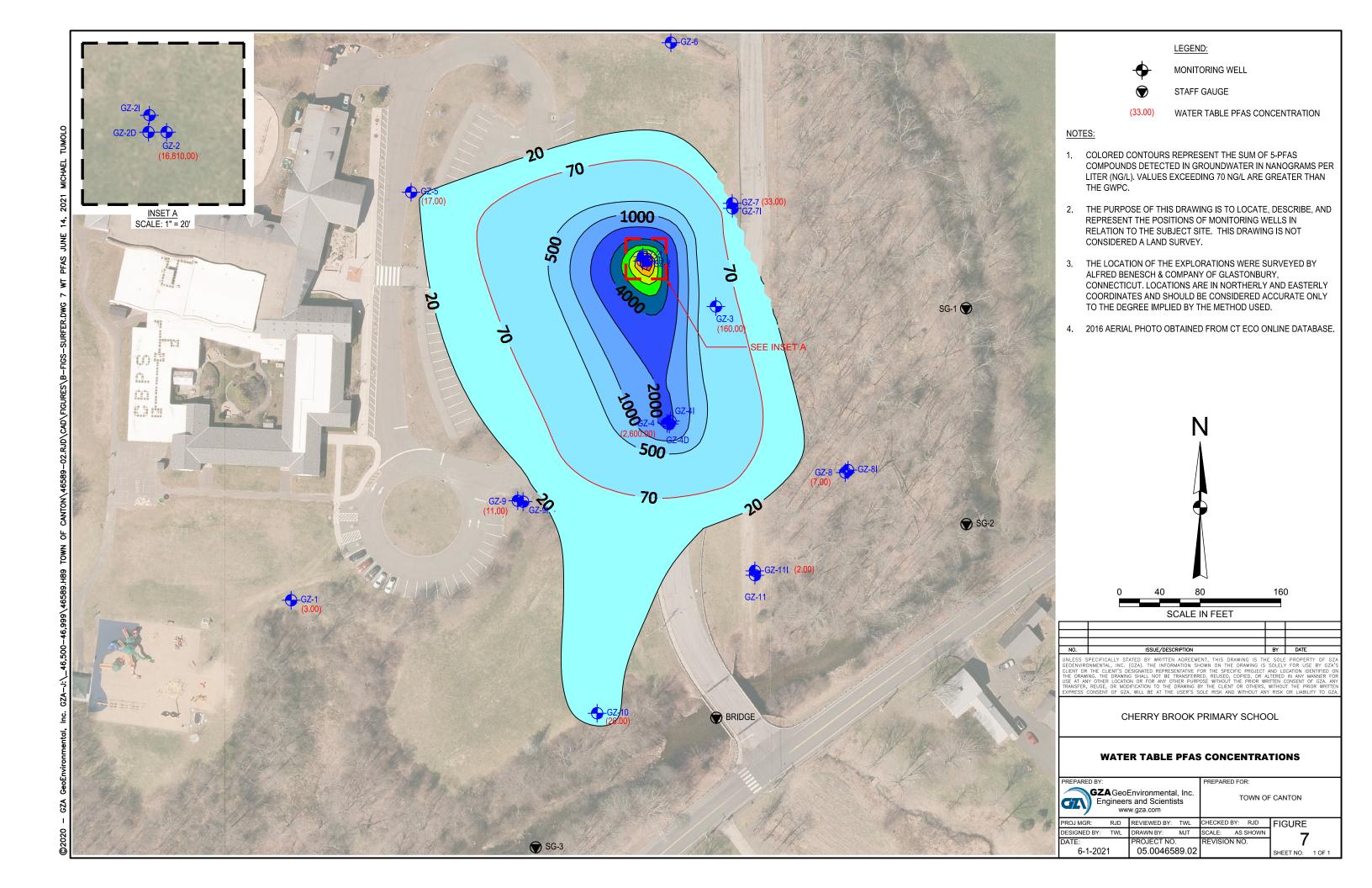

Well ID	Media Well Screened In	Top of Screen Depth	Bottom of Screen Depth	Depth to Top of Bedrock	Difference TOC and Grade	Static Water Level TOC	Static Water Level Grade	_				Effective	Well	Effective Screen Radius	Effective Screen Radius	Kv/Kh Ratio	Aquifer Thickness (b)	Initial Displacement	Static Water Column Height	Slug Method	Test 1 (Slug In)	Test 2 (Slug Out)	Harm_Kh
Units		FT BSG	FT BSG		FT	FT TOC	FT BSG	in	in	ft	ft	ft	in	in	ft	-	ft	ft	FT BSG	-	ft/day	ft/day	ft/day
GZ-1	OB	7	20		0.63	6.724	7.35	4	4	0.17	13.5	13.5	2	1	0.0833	1	12.65	0.469	12.65	Slug	0.53	4.07	2.30
GZ-2	ОВ	4	17.5		0.98	3.63	4.61	4	4	0.17	13.5	13.5	2	1	0.0833	1	12.89	0.765	12.89	Slug	3.96	1.45	2.70
GZ-2D	BR	39.5	44.5	WBR = 23' BR = 30'	0.67	4.95	5.62	6	6	0.25	5	5	3	1	0.0833	1	5	2.044	38.88	Pnuematic	2.62	2.71	2.67
GZ-2I	OB/WBR	20	25	WBR = 23'	1.04	4.452	5.49	6	6	0.25	5	5	3	1	0.0833	1	5	2.102	19.51	Pnuematic	43.75	32.76	38.26
GZ-3	OB	4.3	19.3		0.9	3.62	4.52	4	4	0.17	13.5	13.5	2	1	0.0833	1	14.78	1.491	14.78	Slug	0.36	0.37	0.37
GZ-4	ОВ	4.5	14.5		0.38	3.492	3.87	4	4	0.17	13.5	13.5	2	1	0.0833	1	10	1.491	10.63	Slug	0.44	0.46	0.45
GZ-4D	WBR/BR	29	34	WBR=21' BR=32.5'	0.25	3.418	3.67	6	6	0.25	5	5	3	1	0.0833	1	5	2.005	30.33	Pnuematic	2.85	2.79	2.82
GZ-4I	OB	16	21		0.23	3.457	3.69	6	6	0.25	5	5	3	1	0.0833	1	5	1.984	17.31	Pnuematic	0.36	0.39	0.38
GZ-5	ОВ	5	15		0.6	7.42	8.02	6	6	0.25	5	5	3	1	0.0833	1	6.98	0.579	6.98	Slug		21.55	21.55
GZ-6	OB	4	14	-	0.29	4.37	4.66	6	6	0.25	5	5	3	1	0.0833	1	9.34	0.579	9.34	Slug		25.64	25.64
GZ-7	OB	4	14		0.78	3.664	4.44	6	6	0.25	5	5	3	1	0.0833	1	9.56	1.034	9.56	Slug	2.16	3.94	3.05
GZ-7I	OB/BR	16	21	BR=20'	0.21	4.377	4.59	6	6	0.25	5	5	3	1	0.0833	1	5	2.121	16.41	Pnuematic	35.61	34.11	34.86
GZ-8	ОВ	3	13		-2.63	4.605	1.98	6	6	0.25	5	5	3	1	0.0833	1	10	1.329	11.03	Slug	0.35	0.46	0.41
GZ-8I	BR	23.5	28.5	BR=18.5'	-1.69	3.468	1.78	6	6	0.25	5	5	3	1	0.0833	1	5	1.986	26.72	Pnuematic	3.70	3.54	3.62
GZ-9	ОВ	3.5	13.5		0.34	5.1	5.44	6	6	0.25	5	5	3	1	0.0833	1	8.06	1.491	8.06	Slug	0.50	0.51	0.51
GZ-9I	ОВ	21	26	WBR=26' BR=29'	0.42	5.01	5.43	6	6	0.25	5	5	3	1	0.0833	1	5	2.25	20.57	Pnuematic	6.46	6.48	6.47
GZ-10	OB/WBR	3	13	WBR=9'	-2.64	6	3.36	6	6	0.25	5	5	3	1	0.0833	1	9.64	1.424	9.64	Slug	1.87	2.18	2.03
GZ-11	OB	3.5	13.5		0.78	3.244	4.02	6	6	0.25	5	5	3	1	0.0833	1	9.48	1.424	9.48	Slug	1.84	1.65	1.75
GZ-11I	BR	19.5	24.5	BR=14.5'	0.35	3.82	4.17	6	6	0.25	5	5	3	1	0.0833	1	5	1.982	20.33	Pnuematic	9.39	10.13	9.76

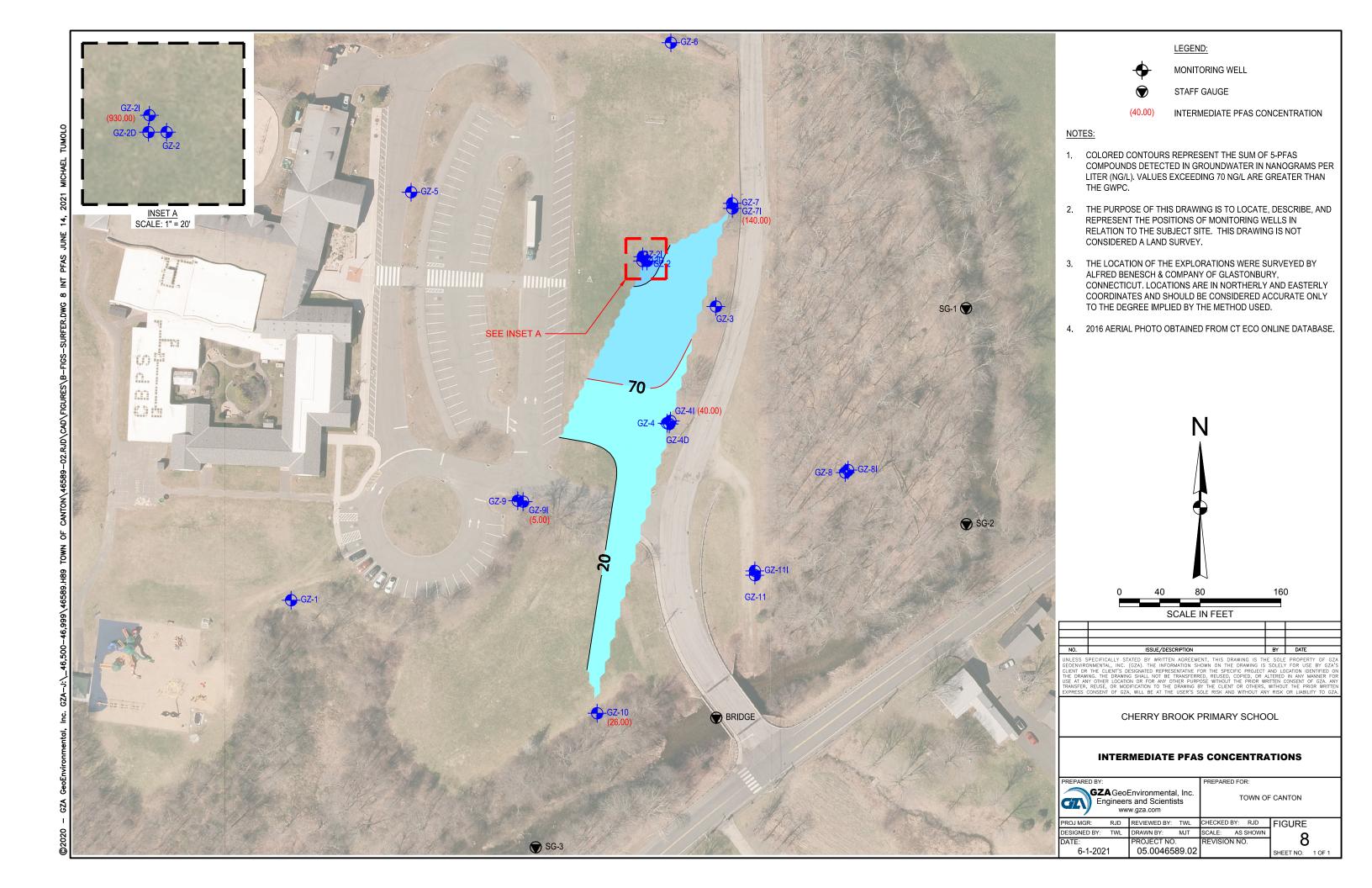

	Average K/unit	Geomean/unit
Soil/OB	5.46	1.84
OB/WBR	25.05	13.93
RR	1 72	4.04

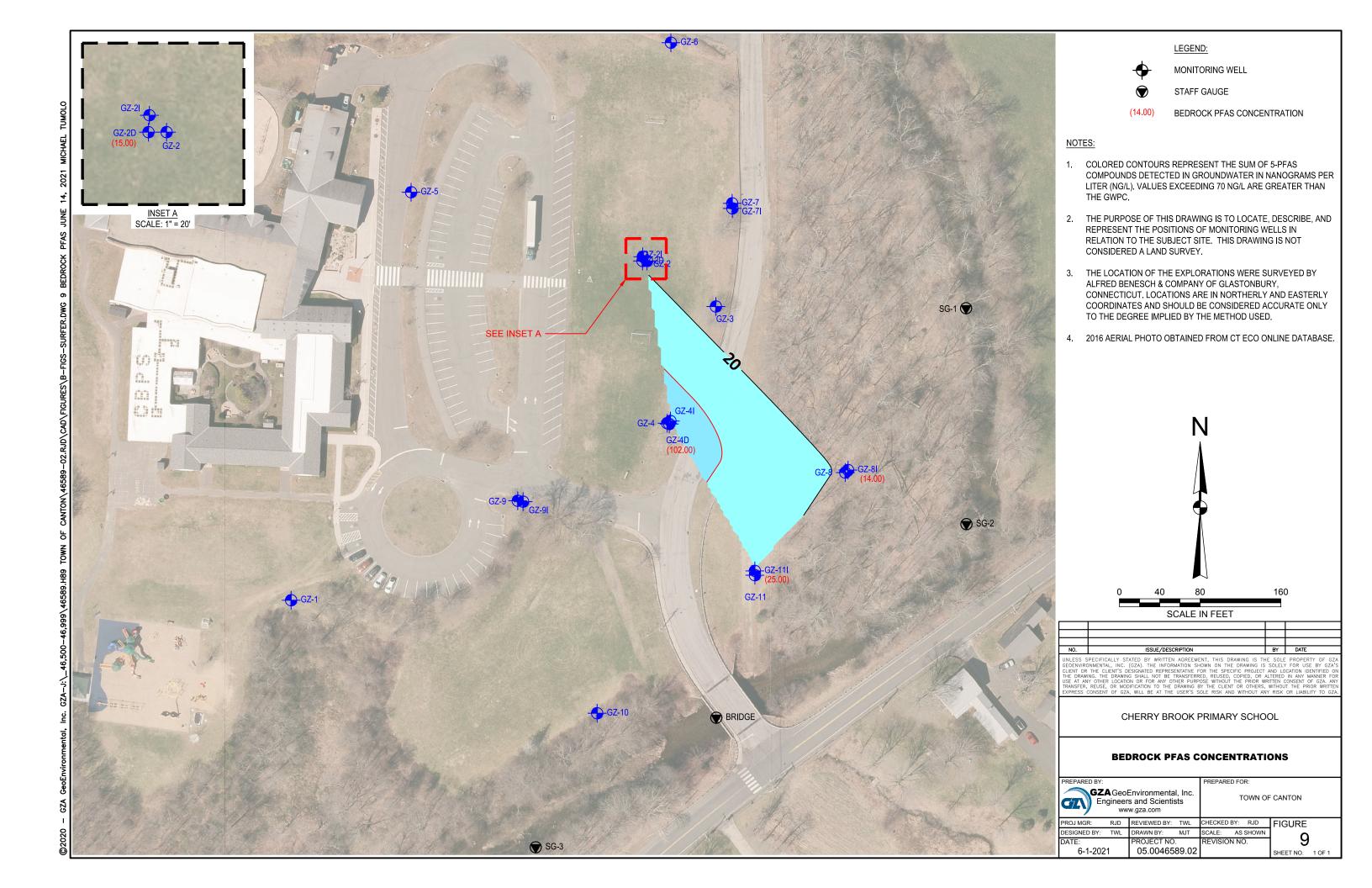


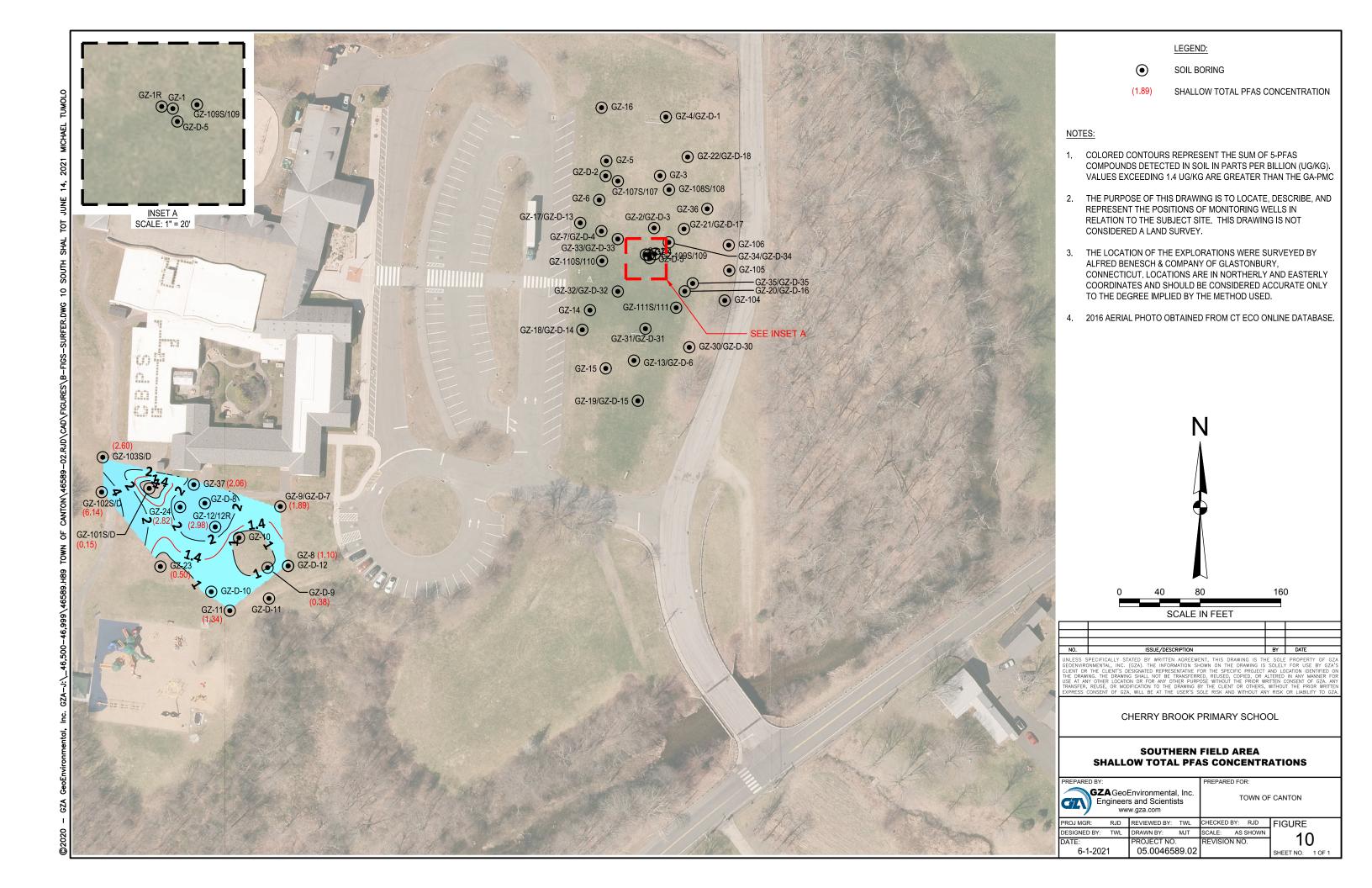

FIGURES

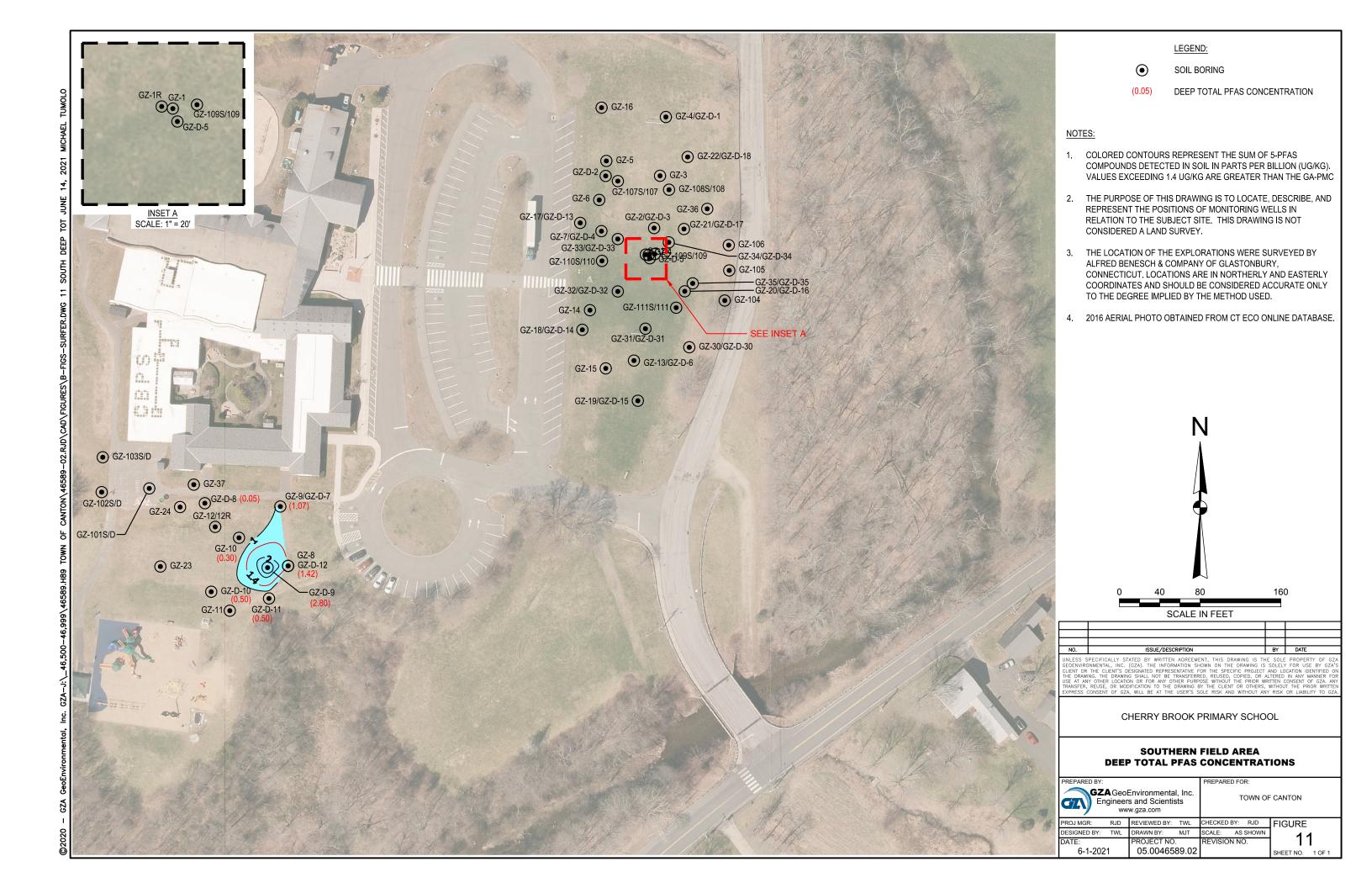


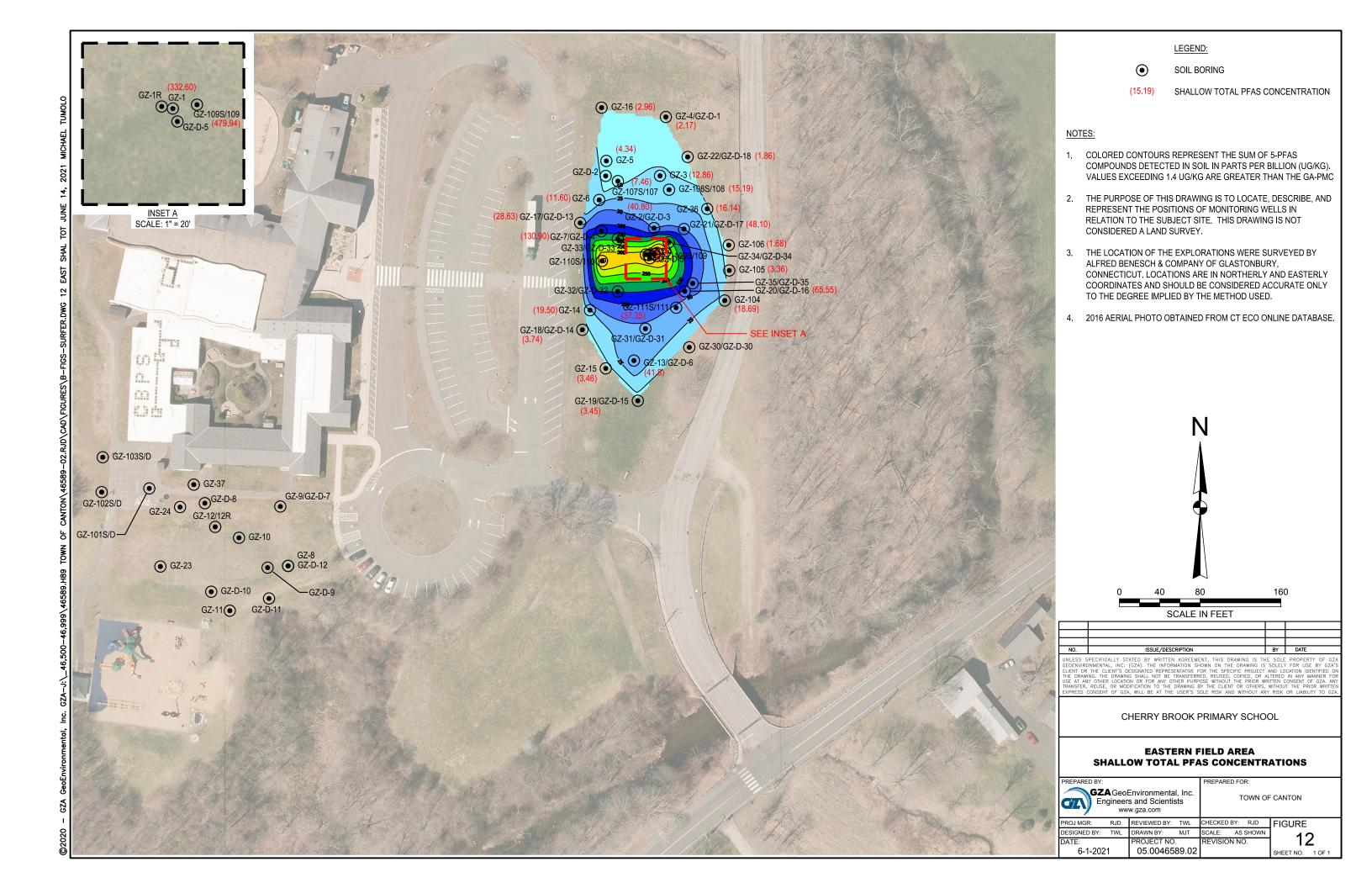


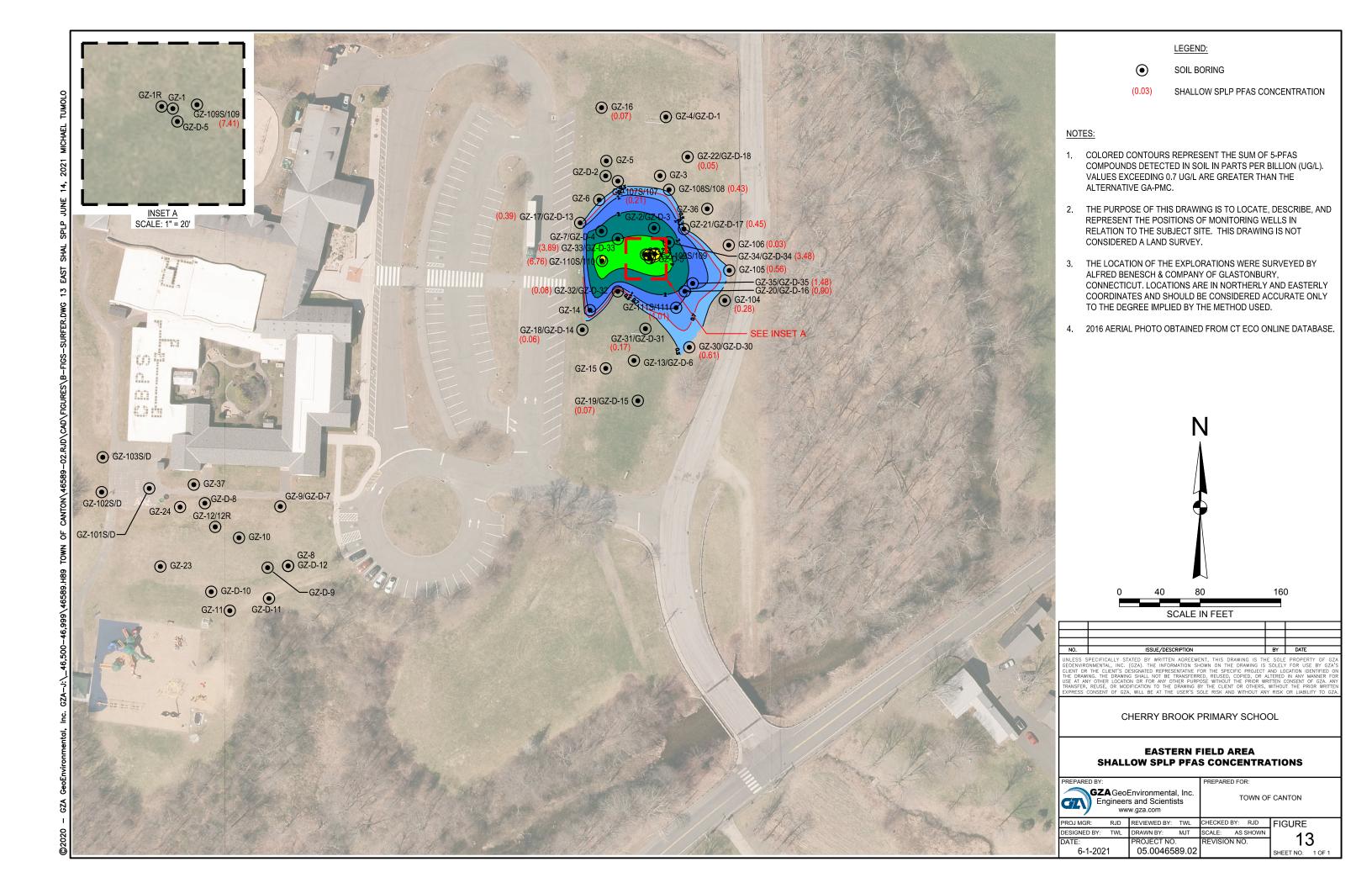


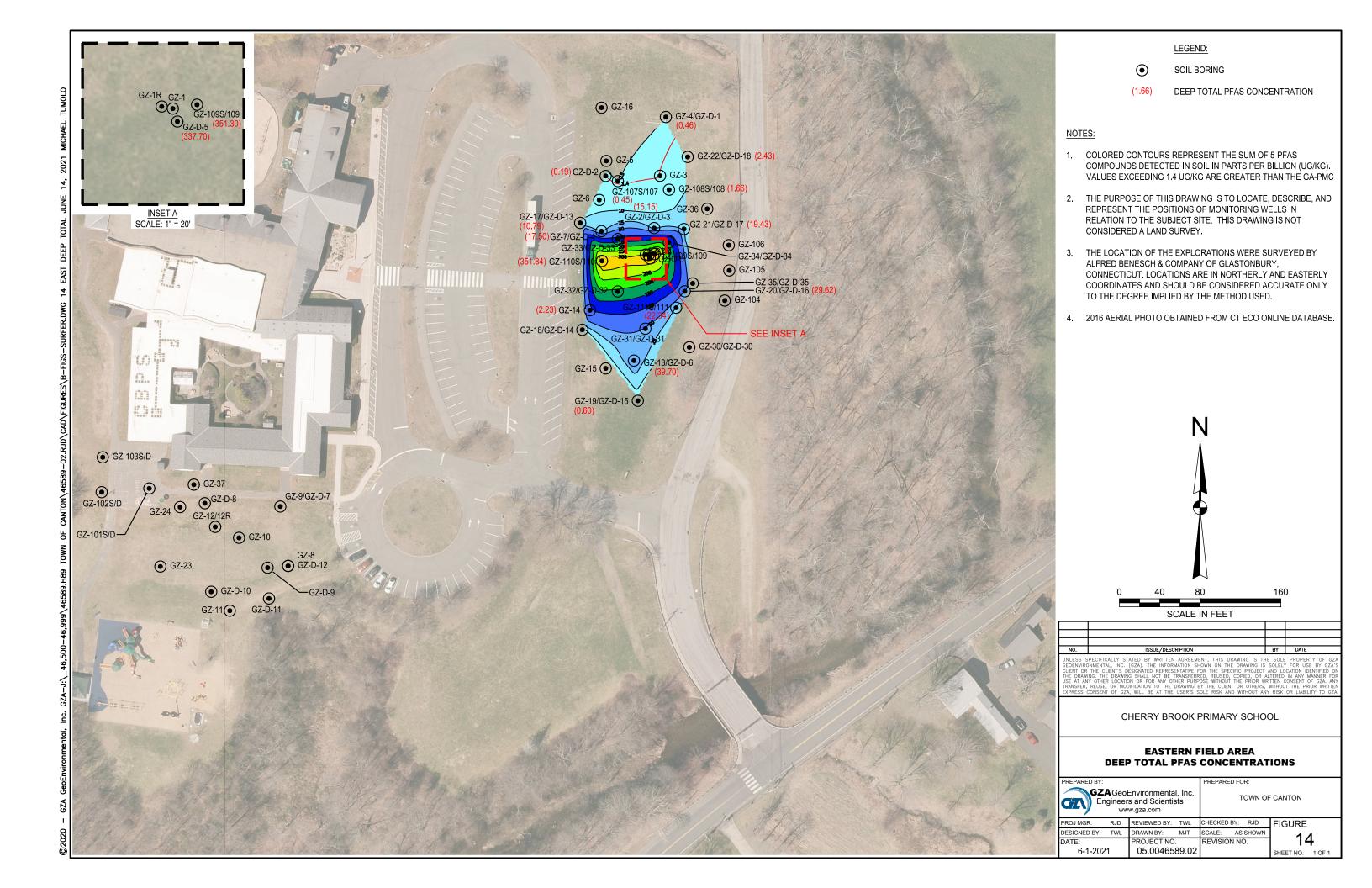


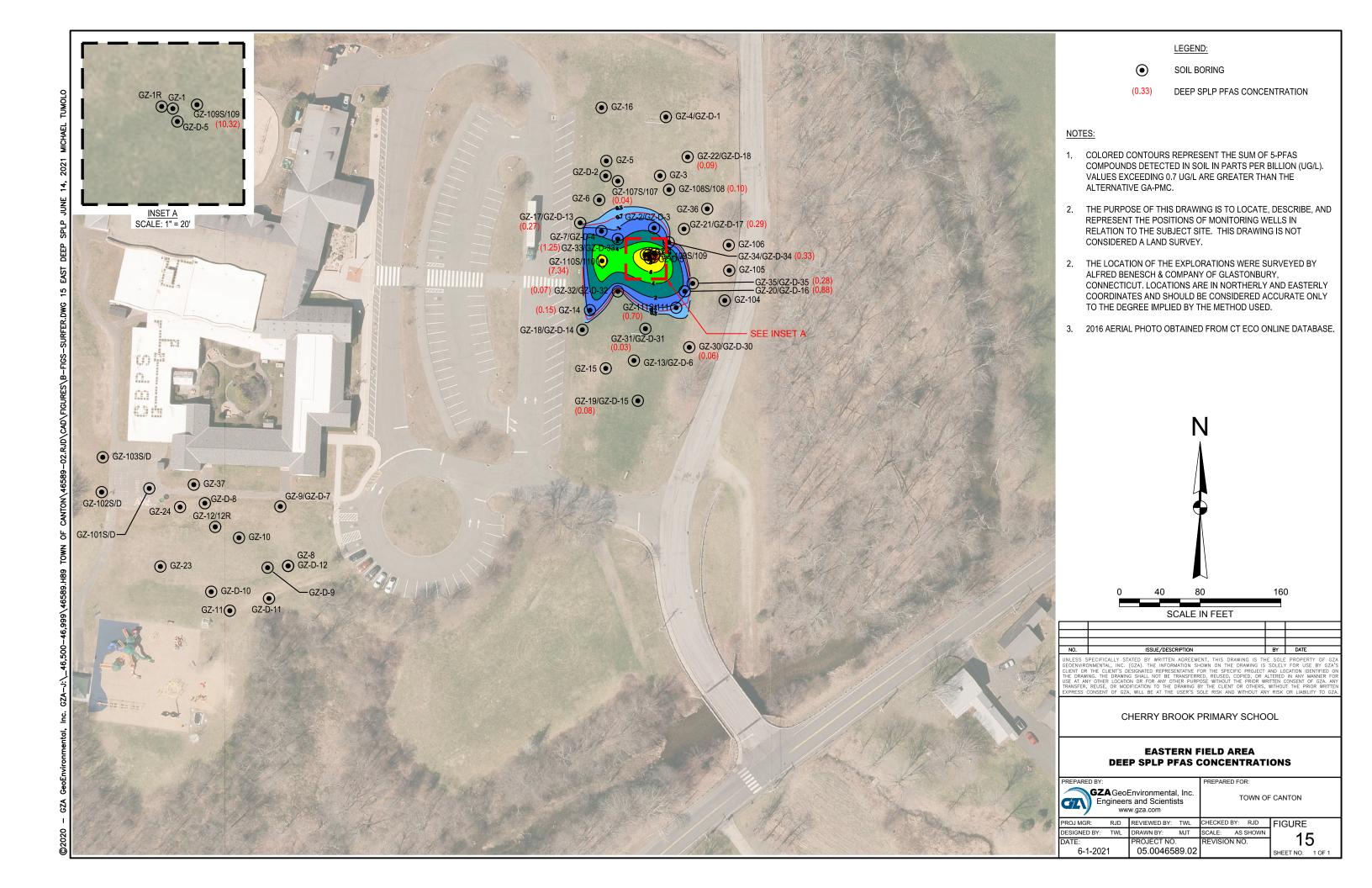


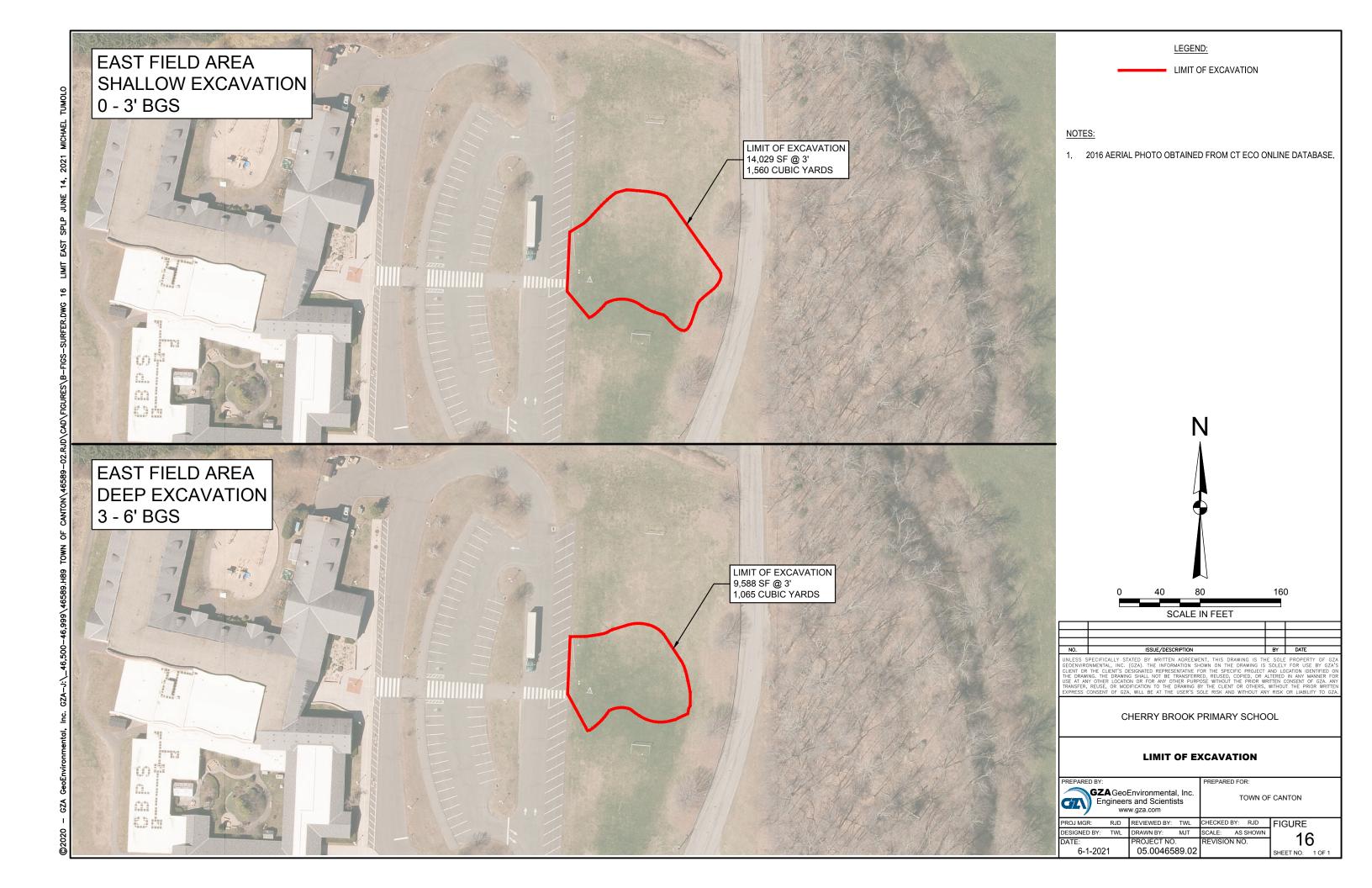












APPENDIX A REPORT LIMITATIONS

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B SOIL BOING LOGS

			SI	HALLOV	W SOIL S	AMPLE	FIELD L	OG	
GZA GeoEnvironmenta 95 Glastonbury Blvd., 3 Glastonbury, CT 06033 Phone: (860) 286-8900	Brd floor		Project Name Location:		Canton	•			Date: 4/1/2021 Page 1 of 1 File No. 05.0046589.00 GZA Staff/Sampler: T. Lucas
Air Temperature (°F):	30's F			SAN	MPLING EQUIP	MENT			PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV
Weather Conditions:	Partly Cloud	dy	Sample Me	thod/Device:]	Hand Auger			Instrument Reading (start):
			Grab	Hand Auger	Hand	Core/Borer	Dredge (Other	Instrument Reading (finish):
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (ft)			Sample Description
GZ-101S	0850	0-2	NM	None	Asphalt	1.5"	Brown, fine to	medium S	SAND and GRAVEL, some fine Gravel, little ???
GZ-101D	0945	2-3.7	NM	None	Asphalt	1.5"	GRAVEL and	brown, fii	ne to medium SAND, some fine Gravel, little ???
GZ-102S	1010	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-103S	1030	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-104S	1120	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-105S	1150	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-106S	1135	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-107S	1210	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, little to some Silt, little Gravel, ???
GZ-108S	1310	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, some Gravel, little Silt
GZ-109S	1337	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, some Gravel, little Silt
GZ-110S	1352	0-2	NM	None	Asphalt	NA	Brown, fine to	medium S	SAND, some Gravel, little Silt
GZ-111S	1352	0-2	NM	None	Grass	NA	Brown, fine to	medium S	SAND, little Silt, little Gravel, trace ??
	SOIL CONDITI	IONS	•	DE	ENSITY		ABBREVIATIONS	S	ORGANIC MATERIALS
Med. Sand 1/64"-1/16 C. Sand 1/6	Too fine to see. st visible particles. " (granular sugar). 6"-1/4" (rock salt).	LITTLE (L.) SOME (S.) AND	0-10% 10-20% 20-35% 35-50%	V. Loose Loose M. Dense Dense	Silt/Clay V. Soft Soft M. Stiff Stiff	V - Very GR - Gray BN - Brown YEL - Yellow RD - Red	F - Fine M - Medium C - Coarse F/M - Fine to Medi E/C - Fine to Coars		Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas. Root Mat: Living root fiber structures, found in marshes. Peat: Fossiliferous root mat - decomposed fiber structure. Note: e.g. logs, branches, roots, shells, black streaks, H2S odor.

			SF	IALLO	W SOIL S	AMPLE	FIELD LOG	
GZA GeoEnvironmenta 95 Glastonbury Blvd., 3 Glastonbury, CT 06033 Phone: (860) 286-8900	Brd floor		Project Name: Location:	:	PROJECT T	Γown of Canton Canton, CT	<u>. </u>	Date: 4/14/2021 Page 1 of 1 File No. 05.0046589.02 GZA Staff/Sampler: TWL
Air Temperature (°F):	70's			SAM	MPLING EQUIP CES Drilling	MENT g Foreman: Bro	ock Dehlinger	PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV
Weather Conditions:	Partly Cloud	dy	1	hod/Device:		DP-2" OD		Instrument Reading (start): 100
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Hand Auger Odor	Ground Cover (asphlt/cnc.gras)	Core/Borer Cover Thickness (ft)	Dredge Other	Instrument Reading (finish): 99.9 Sample Description
GZ-107	815	0-2	ND	None	Grass	NA		SAND, little Silt, trace fine Gravel, trace Roots, dry
GZ-107	827	2-4	ND	None	Grass	NA	3.7 fbg, dry	SAND, little Silt, little Gravel, Boulder debris @ 2.5', 3.2 fbg,
GZ-107	838	4-6	ND	None	Grass	NA	Cobble @ 5.2 fbg, moist	
GZ-108	843	0-2	ND	None	Grass	NA	dry	SAND, little Silt, little Gravel, trace fine Gravel, trace Roots,
GZ-108	845	2-4	ND	None	Grass	NA	moist @ 5', wet	SAND, little Silt, little Gravel, crushed Cobble @ 4.5, 5.5 fbg,
GZ-108	855	4-6	ND	None	Grass	NA	Roots, dry	SAND and GRAVEL, little Silt, 1.5-2 fbg, Boulder, trace SAND, some Gravel, little Silt, Crushed Cobble @ 2.8 fbg,
GZ-110	900	0-2	ND	None	Grass	NA	dry	SAND, some Gravel, little Silt, Crusned Cobble @ 2.8 rbg, SAND, little Gravel, little Silt, trace fine Gravel, Boulder from
GZ-110	904	2-4	ND	None	Grass	NA	5.5-6 fbg, moist @ 5.3 f	
GZ-110	908	4-6	ND	None	Grass	NA	Brown, fine to medium	SAND, some Gravel, little Silt, Crushed Cobble @ 2.8 fbg, dry
GZ-109	913	0-2	ND	None	Grass	NA	Brown, fine to medium	SAND, little Silt, little Gravel, trace Roots, dry
GZ-109	920	2-4	ND	None	Grass	NA		SAND, little Silt, little Gravel, Cobbles @ 2.5, 3.1, 3.7 fbg, dry SAND and GRAVEL, little Silt, little fine Gravel, Cobble @
GZ-109	931	4-6	ND	None	Grass	NA		om 5.3-5.8 fbg, moist @ 4.8, wet 5.3
GZ-111	936	0-2	ND	None	Grass	NA	Brown, fine to medium	SAND, little Silt trace Roots, dry
GZ-111	944	2-4	ND	None	Grass	NA		SAND, little Silt, Gravel, Cobble @ 3.8 fbg, dry SAND, little Gravel, little Silt, boulder from 5.2-5.6 fbg, and
GZ-111	1000	4-6	ND	None	Grass	NA	5.6-6 fbg, moist @ 4.4,	wet @ 4.7
	SOIL CONDITION	1		DE	ENSITY		ABBREVIATIONS	ORGANIC MATERIALS
Med. Sand 1/64"-1/16	Too fine to see. st visible particles. " (granular sugar). 6"-1/4" (rock salt).	LITTLE (L.) SOME (S.)	0-10% 10-20% 20-35% 35-50%	V. Loose Loose M. Dense	Silt/Clay V. Soft Soft M. Stiff	V - Very GR - Gray BN - Brown YEL - Yellow	F - Fine M - Medium C - Coarse F/M - Fine to Medium	Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas. Root Mat: Living root fiber structures, found in marshes. Peat: Fossiliferous root mat - decomposed fiber structure.
	/4" (pea to grape).		33-30%	Dense	Stiff	RD - Red	F/C - Fine to Coarse	Note: e.g. logs, branches, roots, shells, black streaks, H2S odor.

APPENDIX C SOIL LABORATORY ANALYTCIAL RESULTS

```
JOB: L2116799
                  REPORT STYLE: Data Usability Report
0010: Alpha Analytical Report Cover Page - OK
0015: Sample Cross Reference Summary - OK
0060: Case Narrative - OK
0180: Semivolatiles Cover Page - OK
0190: Semivolatiles Sample Results - OK
0200: Semivolatiles Method Blank Report - OK
0210: Semivolatiles LCS Report - OK
0230: Semivolatiles Matrix Spike Report - OK
0240: Semivolatiles Duplicate Report - OK
1180: Inorganics Cover Page - OK
1200: Wet Chemistry Sample Results - OK
1210: Wet Chemistry Method Blank Report - OK
1220: Wet Chemistry LCS Report - OK
1240: Wet Chemistry Matrix Spike Report - OK
1250: Wet Chemistry Duplicate Report - OK
5100: Sample Receipt & Container Information Report - OK
5150: PFAS Parameter Summary - OK
5200: Glossary - OK
5400: References - OK
No results found for sample L2116799-01 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-02 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-03 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-04 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-05 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-06 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-07 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-08 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-09 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-10 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-11 for product A2-SPLP-537-ISOTOPE
No results found for sample L2116799-12 for product A2-SPLP-537-ISOTOPE
```


ANALYTICAL REPORT

Lab Number: L2116799

Client: GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd.

3rd Floor

Glastonbury, CT 06033

ATTN: Richard Desrosiers
Phone: (860) 858-3130

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Report Date: 04/16/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799 **Report Date:** 04/16/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2116799-01	GZ-101S(0-1')	SOIL	CANTON, CT	04/02/21 08:50	04/02/21
L2116799-02	GZ-101D(2-3.7')	SOIL	CANTON, CT	04/02/21 09:45	04/02/21
L2116799-03	GZ-102S(0-2')	SOIL	CANTON, CT	04/02/21 10:10	04/02/21
L2116799-04	GZ-103S(0-2')	SOIL	CANTON, CT	04/02/21 10:30	04/02/21
L2116799-05	GZ-104S(0-2')	SOIL	CANTON, CT	04/02/21 11:20	04/02/21
L2116799-06	GZ-105S(0-2')	SOIL	CANTON, CT	04/02/21 11:35	04/02/21
L2116799-07	GZ-106S(0-2')	SOIL	CANTON, CT	04/02/21 11:50	04/02/21
L2116799-08	GZ-107S(0-2')	SOIL	CANTON, CT	04/02/21 12:10	04/02/21
L2116799-09	GZ-108S(0-2')	SOIL	CANTON, CT	04/02/21 13:10	04/02/21
L2116799-10	GZ-109S(0-2')	SOIL	CANTON, CT	04/02/21 13:37	04/02/21
L2116799-11	GZ-110S(0-2')	SOIL	CANTON, CT	04/02/21 13:52	04/02/21
L2116799-12	GZ-111S(0-2')	SOIL	CANTON, CT	04/02/21 14:10	04/02/21
L2116799-13	FB-040221	WATER	CANTON, CT	04/02/21 14:20	04/02/21
L2116799-14	EB-040221	WATER	CANTON, CT	04/02/21 14:30	04/02/21

Project Name: TOWN OF CANTON Lab Number: L2116799
Project Number: 05.0046589.02 Report Date: 04/16/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: TOWN OF CANTON Lab Number: L2116799
Project Number: 05.0046589.02 Report Date: 04/16/21

Case Narrative (continued)

Report Submission

April 16, 2021: This is a preliminary report.

Sample Receipt

L2117699: Containers for TOC analysis were not received. TOC aliquots were taken from the plastic jars received for 537 analysis.

Perfluorinated Alkyl Acids by Isotope Dilution

L2116799-01, -02, -03R, -03R2, -04R, -04R2, -05R, -05, -06, -07, -08, -09, -10R, -10RE, -11RE, -11R, and -12R: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

L2116799-03R and -12R: Sample was re-extracted at a lesser sample amount due to d3-NMeFOSAA recovering <10%. Re-extraction confirmed matrix effects with lower recoveries than original re-analysis therefore re-analysis is reported.

L2116799-03, -04R, -05, -06, -07, -08, -09, 10R, -11R, and -12R: The MeOH fraction of the extraction is reported for Perfluorooctanesulfonamide (FOSA) due to better extraction efficiency of the M8FOSA Surrogate (Extracted Internal Standard).

L2116799-03R2, -04R2, -05R, -06R, -08R, and -09R: The sample was re-analyzed due to QC failures in the original analysis related to PFNA only. The results of the re-analysis are reported.

L2116799-04R, -10R, -11R, and -12R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

L2116799-10R, -11R, and -12R: The sample was re-extracted on dilution within the method required holding time in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-extraction was performed only for the compound(s) that exceeded the calibration range.

WG1482607-1R, WG1482607-2, WG1485008-1, and WG1485008-2: Extracted Internal Standard recoveries

Project Name:TOWN OF CANTONLab Number:L2116799Project Number:05.0046589.02Report Date:04/16/21

Case Narrative (continued)

were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1482607-1R and WG1482809-2: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

The WG1482809-2 LCS recovery, associated with L2116799-01, -02, -03, -03R2, -03R, -04, -04R, -04R2, -05, -05R, -06, -06R, -07, -08R, -08, -09R, and -09, is above the acceptance criteria for perfluorononanoic acid (pfna) (132%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

Total Organic Carbon

The WG1483543-3 Laboratory Duplicate RPD for total organic carbon (rep2) (57%), performed on L2116799-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Luxen & Med Susan O' Neil

Title: Technical Director/Representative Date: 04/16/21

ORGANICS

SEMIVOLATILES

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2116799

Report Date: 04/16/21

SAIVIFEL RESUL

 Lab ID:
 L2116799-01
 Date Collected:
 04/02/21 08:50

 Client ID:
 GZ-101S(0-1')
 Date Received:
 04/02/21

 Sample Location:
 CANTON, CT
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54
Analytical Date: 04/10/21 18:42

Analyst: SG Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.584		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.584		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.292		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.17		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.584		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.17		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.292		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.292		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.292		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.584		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.584		1	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.292		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.292		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.292		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.584		1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.17		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.584		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.584		1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.584		1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.584		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.584		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.584		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.584		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.584		1	

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 08:50

Client ID: GZ-101S(0-1') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	106		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	72		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	134		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	123		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	99		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	196	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	106		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	238	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	114		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	74		10-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	73		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	138		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	134		24-159	

L2116799

04/02/21 09:45

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date: 04/16/21

Lab Number:

Date Collected:

Lab ID: L2116799-02

Client ID: GZ-101D(2-3.7') Sample Location: CANTON, CT

Date Received: 04/02/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/10/21 18:59

Analyst: SG 87% Percent Solids:

Extraction Method: ALPHA 23528 04/06/21 11:54 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.556		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.556		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.278		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.11		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.556		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.11		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.278		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.278		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.278		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.556		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.556		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.278		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.278		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.278		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.556		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.11		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.556		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.556		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.556		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.556		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.556		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.556		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.556		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.556		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 09:45

Client ID: GZ-101D(2-3.7') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	100		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	67		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	131		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	187	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	84		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	97		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	220	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	104		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	60		10-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	110		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	129		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	136		24-159	

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-03 Date Collected: 04/02/21 10:10

Client ID: GZ-102S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 80%

04/14/21 12:55

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated	d Alkyl Acids by Isotope	Dilution - Mansfield	Lab				
Perfluorooctanesu	ulfonamide (FOSA)	ND		ng/g	0.581		1
Surrogate	(Extracted Internal Standa	rd)		% Recovery	Qualifier		eptance riteria
Perfluoro[13	3C8]Octanesulfonamide (M8F	FOSA)		89			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

SAMPLE RESULTS

Lab ID: L2116799-03 R2 Date Collected: 04/02/21 10:10

Client ID: GZ-102S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS
Percent Solids: 80%

04/15/21 17:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	l Lab				
Perfluorononanoic Acid (PFNA)	0.408		ng/g	0.291		1
Surrogate (Extracted Internal Standar	d)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	<u> </u>		51	0		72-140

04/02/21 10:10

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

L2116799

Lab Number:

Date Collected:

Report Date: 04/16/21

Lab ID: L2116799-03 R

Client ID: GZ-102S(0-2') Sample Location: CANTON, CT

Date Received: 04/02/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/11/21 15:02

Analyst: SG 80% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/06/21 11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.581		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.581		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.291		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.16		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.581		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.16		1	
Perfluoroheptanoic Acid (PFHpA)	0.446		ng/g	0.291		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.291		1	
Perfluorooctanoic Acid (PFOA)	1.76		ng/g	0.291		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.581		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.581		1	
Perfluorooctanesulfonic Acid (PFOS)	3.53		ng/g	0.291		1	
Perfluorodecanoic Acid (PFDA)	0.482		ng/g	0.291		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.581		1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.16		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.581		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.581		1	
Perfluorodecanesulfonic Acid (PFDS)	1.10		ng/g	0.581		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.581		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.581		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.581		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.581		1	

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-03 R Date Collected: 04/02/21 10:10

Client ID: GZ-102S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Perfluoro[13C4]Butanoic Acid (MPFBA) 46 Q 61-135 Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 35 Q 58-150 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 57 Q 74-139 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 65 14-167
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 57 Q 74-139 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 65 14-167
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 65 14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 40 Q 66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 47 Q 71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 73 Q 78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA) 49 Q 75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 96 20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA) 42 Q 72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 62 Q 79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 52 Q 75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 9 Q 31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 52 Q 61-155
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 21 Q 34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 55 54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 25 24-159

Project Name: TOWN OF CANTON Lab Number: L2116799

SAMPLE RESULTS

Lab ID: L2116799-04 Date Collected: 04/02/21 10:30

Client ID: GZ-103S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 81%

04/13/21 04:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	l Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.591		1
Surrogate (Extracted Internal Standard	d)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8F)	OSA)		70			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

SAMPLE RESULTS

Lab ID: L2116799-04 R2 Date Collected: 04/02/21 10:30

Client ID: GZ-103S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS Percent Solids: 81%

04/15/21 17:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	e Dilution - Mansfield	l Lab				
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.295		1
Surrogate (Extracted Internal Standa	ard)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonanoic Acid (M9PFN/	4)		66	0		72-140

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2116799

Report Date: 04/16/21

Lab ID: R L2116799-04

Client ID: GZ-103S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 10:30 Date Received: 04/02/21

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/11/21 15:19

Analyst: SG 81% Percent Solids:

I	Extraction	Method:	ALPHA 2	3528
I	Extraction	Date:	04/06/21	11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab						
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.591		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.591		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.295		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.18		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.591		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.18		1
Perfluoroheptanoic Acid (PFHpA)	0.323		ng/g	0.295		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.295		1
Perfluorooctanoic Acid (PFOA)	1.15		ng/g	0.295		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.591		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.591		1
Perfluorooctanesulfonic Acid (PFOS)	1.13	F	ng/g	0.295		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.295		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.591		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.18		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.591		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.591		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.591		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.591		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.591		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.591		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.591		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-04 R Date Collected: 04/02/21 10:30

Client ID: GZ-103S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	45	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	34	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	76		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	98		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	44	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	54	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	58	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	137		20-154
erfluoro[13C9]Nonanoic Acid (M9PFNA)	56	Q	72-140
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84		79-136
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	66	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	136		19-175
I-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	22	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	68		61-155
l-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	24	Q	34-137
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	84		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	31		24-159

04/02/21 11:20

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2116799

Date Collected:

Report Date: 04/16/21

OAIIII EE REGOI

Lab ID: L2116799-05

Client ID: GZ-104S(0-2')
Sample Location: CANTON, CT

Date Received: 04/02/21
Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/10/21 20:05

Analyst: SG Percent Solids: 61% Extraction Method: ALPHA 23528

Extraction Date: 04/06/21 11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	1.43		ng/g	0.734		1
Perfluoropentanoic Acid (PFPeA)	3.39		ng/g	0.734		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.367		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.47		1
Perfluorohexanoic Acid (PFHxA)	3.33		ng/g	0.734		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.47		1
Perfluoroheptanoic Acid (PFHpA)	2.18		ng/g	0.367		1
Perfluorohexanesulfonic Acid (PFHxS)	3.26		ng/g	0.367		1
Perfluorooctanoic Acid (PFOA)	3.65		ng/g	0.367		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.734		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.734		1
Perfluorooctanesulfonic Acid (PFOS)	8.08		ng/g	0.367		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.367		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.734		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.47		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.734		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.734		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.734		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.734		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.734		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.734		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.734		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-05 Date Collected: 04/02/21 11:20

Client ID: GZ-104S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	68		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	46	Q	58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	72	Q	74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	95		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	57	Q	66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	65	Q	71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	89		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	66	Q	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	136		20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	60	Q	72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74	Q	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	154		19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	14	Q	31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		61-155	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	26	Q	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	92		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	70		24-159	

Project Name: TOWN OF CANTON **Lab Number:** L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 11:20

Client ID: GZ-104S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 61%

04/13/21 04:09

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinate	d Alkyl Acids by Isotope	Dilution - Mansfield I	Lab				
Perfluorooctanes	ulfonamide (FOSA)	ND		ng/g	0.734		1
Surrogate	(Extracted Internal Standa	rd)		% Recovery	Qualifier		eptance riteria
Perfluoro[1	3C8]Octanesulfonamide (M8F	OSA)		78			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-05 R Date Collected: 04/02/21 11:20

Client ID: GZ-104S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS
Percent Solids: 61%

04/15/21 17:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	e Dilution - Mansfield	l Lab				
Perfluorononanoic Acid (PFNA)	1.52		ng/g	0.367		1
Surrogate (Extracted Internal Standa	ard)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonanoic Acid (M9PFN)	4)		71	0		72-140

L2116799

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/16/21

Lab ID: L2116799-06

Client ID: GZ-105S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 11:35 Date Received: 04/02/21 Not Specified

Field Prep:

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/10/21 20:22

Analyst: SG 80% Percent Solids:

Extraction Method: ALPHA 23528

Extraction Date: 04/06/21 11:54

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Perfluorobutanoic Acid (PFBA) Perfluoropentanoic Acid (PFPeA) Perfluorobutanesulfonic Acid (PFBS) ND ng/g 0.54 Perfluorobutanesulfonic Acid (PFBS) ND ng/g 1.10 Perfluorohexanoic Acid (PFHxA) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 0.27	49 75 0 49 0 75	1 1 1 1 1
Perfluoropentanoic Acid (PFPeA) ND ng/g 0.54 Perfluorobutanesulfonic Acid (PFBS) ND ng/g 0.27 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS) ND ng/g 1.10 Perfluorohexanoic Acid (PFHxA) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluorohexanoic Acid (PFPeS) ND ng/g 0.27	49 75 0 49 0 75	1 1 1 1
Perfluorobutanesulfonic Acid (PFBS) ND ng/g 0.27 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS) ND ng/g 1.10 Perfluorohexanoic Acid (PFHxA) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluorohexanoic Acid (PFPeS) ND ng/g 1.10 Perfluoroheptanoic Acid (PFHpA) 0.446 ng/g 0.27	75 0 49 0 75	1 1 1 1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS) ND ng/g 1.10 Perfluorohexanoic Acid (PFHxA) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluoroheptanoic Acid (PFHpA) 0.446 ng/g 0.27	0 49 0 75	1 1 1
Perfluorohexanoic Acid (PFHxA) ND ng/g 0.54 Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluoroheptanoic Acid (PFHpA) 0.446 ng/g 0.27	49 0 75	1
Perfluoropentanesulfonic Acid (PFPeS) ND ng/g 1.10 Perfluoroheptanoic Acid (PFHpA) 0.446 ng/g 0.27	0 75	1
Perfluoroheptanoic Acid (PFHpA) 0.446 ng/g 0.27	75	
		4
		1
Perfluorohexanesulfonic Acid (PFHxS) 0.726 ng/g 0.27	75	1
Perfluorooctanoic Acid (PFOA) 0.911 ng/g 0.27	75	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) ND ng/g 0.54	19	1
Perfluoroheptanesulfonic Acid (PFHpS) ND ng/g 0.54	19	1
Perfluorooctanesulfonic Acid (PFOS) 0.947 ng/g 0.27	75	1
Perfluorodecanoic Acid (PFDA) ND ng/g 0.27	75	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) ND ng/g 0.54	19	1
Perfluorononanesulfonic Acid (PFNS) ND ng/g 1.10	0	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid ND ng/g 0.54 (NMeFOSAA)	19	1
Perfluoroundecanoic Acid (PFUnA) ND ng/g 0.54	19	1
Perfluorodecanesulfonic Acid (PFDS) ND ng/g 0.54	49	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid ND ng/g 0.54 (NEtFOSAA)	49	1
Perfluorododecanoic Acid (PFDoA) ND ng/g 0.54	19	1
Perfluorotridecanoic Acid (PFTrDA) ND ng/g 0.54	49	1
Perfluorotetradecanoic Acid (PFTA) ND ng/g 0.54	49	1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 11:35

Client ID: GZ-105S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	67		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	47	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	73	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	104		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	54	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	63	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	66	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	162	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	59	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	70	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	178	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	21	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	80		61-155
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	30	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	89		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	71		24-159

Project Name: TOWN OF CANTON **Lab Number:** L2116799

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 11:35

Client ID: GZ-105S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 80%

04/13/21 04:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.549		1
Surrogate (Extracted Internal Standard	d)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8F0	OSA)		73			10-117

Project Name: TOWN OF CANTON **Lab Number:** L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-06 R Date Collected: 04/02/21 11:35

Client ID: GZ-105S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS
Percent Solids: 80%

04/15/21 18:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	l Lab				
Perfluorononanoic Acid (PFNA)	0.333		ng/g	0.275		1
Surrogate (Extracted Internal Standar	rd)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonanoic Acid (M9PFNA)		73			72-140

L2116799

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/16/21

Lab ID: L2116799-07

Client ID: GZ-106S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 11:50 Date Received: 04/02/21

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/10/21 20:38

Analyst: SG 63% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/06/21 11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.757		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.757		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.378		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.51		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.757		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.51		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.378		1	
Perfluorohexanesulfonic Acid (PFHxS)	0.653		ng/g	0.378		1	
Perfluorooctanoic Acid (PFOA)	0.553		ng/g	0.378		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.757		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.757		1	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.378		1	
Perfluorooctanesulfonic Acid (PFOS)	0.474		ng/g	0.378		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.378		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.757		1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.51		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.757		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.757		1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.757		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.757		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.757		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.757		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.757		1	

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-07 Date Collected: 04/02/21 11:50

Client ID: GZ-106S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

urrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
erfluoro[13C4]Butanoic Acid (MPFBA)	76		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	51	Q	58-150
erfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	77		74-139
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	110		14-167
erfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	Q	66-128
erfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	69	Q	71-129
erfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	97		78-139
erfluoro[13C8]Octanoic Acid (M8PFOA)	72	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	150		20-154
erfluoro[13C9]Nonanoic Acid (M9PFNA)	62	Q	72-140
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85		79-136
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	70	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	165		19-175
I-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	23	Q	31-134
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	69		61-155
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	28	Q	34-137
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	84		54-150
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	51		24-159

Project Name: TOWN OF CANTON **Lab Number:** L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

 Lab ID:
 L2116799-07
 Date Collected:
 04/02/21 11:50

 Client ID:
 GZ-106S(0-2')
 Date Received:
 04/02/21

Client ID: GZ-106S(0-2') Date Received: 04/02/21

Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analytical Date: 04/13/21 04:24

Analyst: HT

Percent Solids: 63%

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinate	d Alkyl Acids by Isotope	Dilution - Mansfield	Lab				
Perfluorooctanesu	ulfonamide (FOSA)	ND		ng/g	0.757		1
Surrogate	(Extracted Internal Standa	rd)		% Recovery	Qualifier		eptance riteria
Perfluoro[1:	3C8]Octanesulfonamide (M8F	OSA)		74			10-117

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

L2116799

Lab Number:

Date Collected:

Extraction Date:

Report Date: 04/16/21

Lab ID: L2116799-08

Client ID: GZ-107S(0-2') Sample Location: CANTON, CT

Date Received: 04/02/21

04/02/21 12:10

04/06/21 11:54

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/10/21 20:55

Analyst: SG 87% Percent Solids:

Extraction Method: ALPHA 23528

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.547		1
Perfluoropentanoic Acid (PFPeA)	0.547		ng/g	0.547		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.273		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.09		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.547		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.09		1
Perfluoroheptanoic Acid (PFHpA)	0.342		ng/g	0.273		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.273		1
Perfluorooctanoic Acid (PFOA)	0.855		ng/g	0.273		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.547		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.547		1
Perfluorooctanesulfonic Acid (PFOS)	4.16		ng/g	0.273		1
Perfluorodecanoic Acid (PFDA)	1.03		ng/g	0.273		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.547		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.09		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.547		1
Perfluoroundecanoic Acid (PFUnA)	1.02		ng/g	0.547		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.547		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.547		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.547		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.547		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.547		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 12:10

Client ID: GZ-107S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	53	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	114		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	62	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	73		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	76		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	165	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	67	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	97		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	196	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	14	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	87		61-155
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	29	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	108		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	94		24-159

Project Name: TOWN OF CANTON **Lab Number:** L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 12:10

Client ID: GZ-107S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54
Analytical Date: 04/13/21 04:31

Analyst: HT Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope I	Dilution - Mansfield	d Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.547		1
Surrogate (Extracted Internal Standard))		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8FC	DSA)		80			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-08 R Date Collected: 04/02/21 12:10

Client ID: GZ-107S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS
Percent Solids: 87%

04/15/21 18:18

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Ad	cids by Isotope Dilution	- Mansfield	Lab				
Perfluorononanoic Acid (PFNA	A)	2.10		ng/g	0.273		1
Surrogate (Extracted	d Internal Standard)			% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonan	oic Acid (M9PFNA)			81			72-140

L2116799

04/06/21 11:54

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Extraction Date:

Report Date: 04/16/21

Lab ID: L2116799-09

Client ID: GZ-108S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 13:10 Date Received: 04/02/21

Field Prep: Not Specified

Extraction Method: ALPHA 23528

Sample Depth:

Matrix: Soil

134,LCMSMS-ID Analytical Method: Analytical Date: 04/10/21 21:11

Analyst: SG 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.520		1
Perfluoropentanoic Acid (PFPeA)	0.628		ng/g	0.520		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.260		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.04		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.520		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.04		1
Perfluoroheptanoic Acid (PFHpA)	0.544		ng/g	0.260		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.260		1
Perfluorooctanoic Acid (PFOA)	1.12		ng/g	0.260		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.520		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.520		1
Perfluorooctanesulfonic Acid (PFOS)	10.6		ng/g	0.260		1
Perfluorodecanoic Acid (PFDA)	0.632		ng/g	0.260		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.520		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.04		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.520		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.520		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.520		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.520		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.520		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.520		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.520		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/02/21 13:10

Client ID: GZ-108S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	80		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	56	Q	58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	84		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	110		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	67		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	77		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	158	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	72		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	191	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	16	Q	31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93		61-155	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	28	Q	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	103		24-159	

Project Name: TOWN OF CANTON **Lab Number:** L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-09 Date Collected: 04/02/21 13:10

Client ID: GZ-108S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 87%

04/13/21 04:38

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated	d Alkyl Acids by Isotope	Dilution - Mansfield	Lab				
Perfluorooctanesu	Ilfonamide (FOSA)	ND		ng/g	0.520		1
Surrogate	(Extracted Internal Standa	rd)		% Recovery	Qualifier		eptance riteria
Perfluoro[13	3C8]Octanesulfonamide (M8I	FOSA)		83			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

SAMPLE RESULTS

Lab ID: L2116799-09 R Date Collected: 04/02/21 13:10

Client ID: GZ-108S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: RS
Percent Solids: 87%

04/15/21 18:35

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinate	d Alkyl Acids by Isotop	e Dilution - Mansfield I	Lab				
Perfluorononanoi	c Acid (PFNA)	2.93		ng/g	0.260		1
Surrogate	(Extracted Internal Stand	ard)		% Recovery	Qualifier		eptance riteria
Perfluoro[1:	3C9]Nonanoic Acid (M9PFN	IA)		86			72-140

Project Name: Lab Number: TOWN OF CANTON L2116799

Report Date: **Project Number:** 05.0046589.02 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-10 Date Collected: 04/02/21 13:37

Date Received: Client ID: GZ-109S(0-2') 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Soil

Extraction Date: 04/06/21 11:54 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: HT 81% Percent Solids:

04/14/21 00:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfield	d Lab				
Perfluorooctanesulfonamide (FOSA)	8.05	F	ng/g	0.602		1
Surrogate (Extracted Internal Standard)			% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8FOSA)			99		,	10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-10 RE Date Collected: 04/02/21 13:37

Client ID: GZ-109S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/12/21 09:25

Analyst: SG
Percent Solids: 81%

04/13/21 23:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	d Lab				
Perfluorooctanesulfonic Acid (PFOS)	423		ng/g	0.985		1
Surrogate (Extracted Internal Standard	d)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonic Acid (M8P	FOS)		66	0		79-136

L2116799

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date: 04/16/21

Lab Number:

Lab ID: L2116799-10 R

Client ID: GZ-109S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 13:37 Date Received: 04/02/21

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/11/21 15:35

Analyst: SG 81% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/06/21 11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	1.09		ng/g	0.602		1
Perfluoropentanoic Acid (PFPeA)	3.23		ng/g	0.602		1
Perfluorobutanesulfonic Acid (PFBS)	0.496		ng/g	0.301		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.20		1
Perfluorohexanoic Acid (PFHxA)	3.57		ng/g	0.602		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.20		1
Perfluoroheptanoic Acid (PFHpA)	3.28		ng/g	0.301		1
Perfluorohexanesulfonic Acid (PFHxS)	21.5		ng/g	0.301		1
Perfluorooctanoic Acid (PFOA)	6.06		ng/g	0.301		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	2.00		ng/g	0.602		1
Perfluoroheptanesulfonic Acid (PFHpS)	1.86		ng/g	0.602		1
Perfluorononanoic Acid (PFNA)	26.1		ng/g	0.301		1
Perfluorooctanesulfonic Acid (PFOS)	396	Е	ng/g	0.301		1
Perfluorodecanoic Acid (PFDA)	15.8		ng/g	0.301		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	10.0		ng/g	0.602		1
Perfluorononanesulfonic Acid (PFNS)	3.26		ng/g	1.20		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.602		1
Perfluoroundecanoic Acid (PFUnA)	12.6		ng/g	0.602		1
Perfluorodecanesulfonic Acid (PFDS)	2.92		ng/g	0.602		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.602		1
Perfluorododecanoic Acid (PFDoA)	1.83		ng/g	0.602		1
Perfluorotridecanoic Acid (PFTrDA)	1.90		ng/g	0.602		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.602		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-10 R Date Collected: 04/02/21 13:37

Client ID: GZ-109S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	41	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	32	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	117		74-139
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	132		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	42	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	53	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	146	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	58	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	194	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	47	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	65	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	222	Q	19-175
I-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	17	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	72		61-155
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	27	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	85		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	64		24-159

Project Name: TOWN OF CANTON **Lab Number:** L2116799

SAMPLE RESULTS

Lab ID: L2116799-11 Date Collected: 04/02/21 13:52

Client ID: GZ-110S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/06/21 11:54

Analyst: HT Percent Solids: 81%

04/14/21 00:53

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinate	d Alkyl Acids by Isotope Dilution	r - Mansfield	d Lab				
Perfluorooctanes	ulfonamide (FOSA)	2.84	F	ng/g	0.581		1
Surrogate	(Extracted Internal Standard)			% Recovery	Qualifier		eptance riteria
Perfluoro[1	3C8]Octanesulfonamide (M8FOSA)			99			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-11 RE Date Collected: 04/02/21 13:52

Client ID: GZ-110S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/12/21 09:25

Analyst: SG
Percent Solids: 81%

04/13/21 23:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	l Lab				
Perfluorooctanesulfonic Acid (PFOS)	323		ng/g	0.962		1
Surrogate (Extracted Internal Standard	(t		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonic Acid (M8P	FOS)		65	0		79-136

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2116799

Report Date: 04/16/21

Lab ID: L2116799-11 R

Client ID: GZ-110S(0-2')
Sample Location: CANTON, CT

Date Collected: 04/02/21 13:52
Date Received: 04/02/21
Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/11/21 15:52

Analyst: SG Percent Solids: 81% Extraction Method: ALPHA 23528
Extraction Date: 04/06/21 11:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	0.881		ng/g	0.581		1
Perfluoropentanoic Acid (PFPeA)	4.08		ng/g	0.581		1
Perfluorobutanesulfonic Acid (PFBS)	0.681		ng/g	0.290		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.16		1
Perfluorohexanoic Acid (PFHxA)	2.82		ng/g	0.581		1
Perfluoropentanesulfonic Acid (PFPeS)	1.28		ng/g	1.16		1
Perfluoroheptanoic Acid (PFHpA)	2.70		ng/g	0.290		1
Perfluorohexanesulfonic Acid (PFHxS)	21.5		ng/g	0.290		1
Perfluorooctanoic Acid (PFOA)	4.06		ng/g	0.290		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	6.75		ng/g	0.581		1
Perfluoroheptanesulfonic Acid (PFHpS)	2.69		ng/g	0.581		1
Perfluorononanoic Acid (PFNA)	18.2		ng/g	0.290		1
Perfluorooctanesulfonic Acid (PFOS)	271	E	ng/g	0.290		1
Perfluorodecanoic Acid (PFDA)	8.10		ng/g	0.290		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	2.76		ng/g	0.581		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.16		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.581		1
Perfluoroundecanoic Acid (PFUnA)	6.83		ng/g	0.581		1
Perfluorodecanesulfonic Acid (PFDS)	0.996		ng/g	0.581		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.581		1
Perfluorododecanoic Acid (PFDoA)	1.05		ng/g	0.581		1
Perfluorotridecanoic Acid (PFTrDA)	2.46		ng/g	0.581		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.581		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-11 R Date Collected: 04/02/21 13:52

Client ID: GZ-110S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	55	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	44	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	124		74-139
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	161		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	58	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	70	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	150	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	77		75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	257	Q	20-154
erfluoro[13C9]Nonanoic Acid (M9PFNA)	62	Q	72-140
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		79-136
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81		75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	281	Q	19-175
-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	11	Q	31-134
erfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93		61-155
-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	27	Q	34-137
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103		54-150
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	73		24-159

Project Name: Lab Number: TOWN OF CANTON L2116799

Report Date: **Project Number:** 05.0046589.02 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-12 Date Collected: 04/02/21 14:10

GZ-111S(0-2') Date Received: Client ID: 04/02/21 Sample Location: Field Prep: CANTON, CT Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Soil

Extraction Date: 04/06/21 11:54 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: HT 84% Percent Solids:

04/14/21 13:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	d Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.555		1
Surrogate (Extracted Internal Standard	i)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8F0	DSA)		78			10-117

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-12 RE Date Collected: 04/02/21 14:10

Client ID: GZ-111S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/12/21 09:25
Analytical Date: 04/13/21 23:33

Analyst: HT Percent Solids: 84%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope	Dilution - Mansfield	l Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	1.68		1
Surrogate (Extracted Internal Standard	ti)		% Recovery	Qualifier		eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8F0	OSA)		96			10-117

L2116799

04/06/21 11:54

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Extraction Date:

Report Date: 04/16/21

Lab ID: R L2116799-12

Client ID: GZ-111S(0-2') Sample Location: CANTON, CT

Date Collected: 04/02/21 14:10 Date Received: 04/02/21

Field Prep: Not Specified

Extraction Method: ALPHA 23528

Sample Depth:

Parameter

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/11/21 16:25

Analyst: SG 84% Percent Solids:

RL	MDL	Dilution Factor	
0.555		1	
0.555 0.555		1	
		·	

Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfield	d Lab				
Perfluorobutanoic Acid (PFBA)	0.778		ng/g	0.555	 1	
Perfluoropentanoic Acid (PFPeA)	2.16		ng/g	0.555	 1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.278	 1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.11	 1	
Perfluorohexanoic Acid (PFHxA)	1.26		ng/g	0.555	 1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.11	 1	
Perfluoroheptanoic Acid (PFHpA)	1.73		ng/g	0.278	 1	
Perfluorohexanesulfonic Acid (PFHxS)	2.29		ng/g	0.278	 1	
Perfluorooctanoic Acid (PFOA)	2.23		ng/g	0.278	 1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.555	 1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.555	 1	
Perfluorononanoic Acid (PFNA)	15.1		ng/g	0.278	 1	
Perfluorooctanesulfonic Acid (PFOS)	16.0		ng/g	0.278	 1	
Perfluorodecanoic Acid (PFDA)	0.742		ng/g	0.278	 1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.555	 1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.11	 1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	6.74		ng/g	0.555	 1	
Perfluoroundecanoic Acid (PFUnA)	4.44		ng/g	0.555	 1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.555	 1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	4.36	F	ng/g	0.555	 1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.555	 1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.555	 1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.555	 1	

Qualifier

Units

Result

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-12 R Date Collected: 04/02/21 14:10

Client ID: GZ-111S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	41	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	30	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	64	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	51		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	37	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	43	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	80		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	47	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	85		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	40	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	74	Q	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	48	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	102		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	7	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	52	Q	61-155
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	13	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	49		24-159
rfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	60	Q	54-150

L2116799

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date:

Lab Number:

04/16/21

04/13/21 07:12

Lab ID: Date Collected: 04/02/21 14:20 L2116799-13 Date Received: Client ID: 04/02/21 FB-040221

Sample Location: Field Prep: CANTON, CT Not Specified

Sample Depth:

Analytical Date:

Extraction Method: ALPHA 23528 Matrix: Water

Extraction Date: 04/05/21 16:10 Analytical Method: 134,LCMSMS-ID

Analyst: RS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.89		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.89		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.89		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.89		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.89		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.89		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.89		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.89		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.89		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.89		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.89		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.89		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.89		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.89		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.89		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.89		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.89		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.89		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.89		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.89		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.89		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.89		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.89		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.89		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-13 Date Collected: 04/02/21 14:20

Client ID: FB-040221 Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	96		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	71		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	62		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	78		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	93		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	107		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	131		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	60		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	100		22-136	

L2116799

04/02/21 14:30

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date: 04/16/21

Lab Number:

Date Collected:

Lab ID: L2116799-14

Client ID: EB-040221 Sample Location: CANTON, CT Date Received: 04/02/21

Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/13/21 07:28

Analyst: RS Extraction Method: ALPHA 23528 **Extraction Date:** 04/05/21 16:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.86		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.86		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.86		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.86		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.86		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.86		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.86		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.86		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.86		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.86		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.86		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.86		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86		1

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-14 Date Collected: 04/02/21 14:30

Client ID: EB-040221 Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	94	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	68	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	68	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	75	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	116	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	89	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	145	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	66	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	97	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	61	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	81	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	101	22-136

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/14/21 20:00

Perfluorononanesulfonic Acid (PFNS)

Perfluoroundecanoic Acid (PFUnA)

Perfluorodecanesulfonic Acid (PFDS)

Perfluorooctanesulfonamide (FOSA)

Perfluorododecanoic Acid (PFDoA)

Perfluorotridecanoic Acid (PFTrDA)

Perfluorotetradecanoic Acid (PFTA)

N-Ethyl Perfluorooctanesulfonamidoacetic

Acid (NMeFOSAA)

Acid (NEtFOSAA)

N-Methyl Perfluorooctanesulfonamidoacetic

Analyst: SG

Extraction Method: ALPHA 23528
Extraction Date: 04/05/21 16:10

Parameter Result Qualifier Units RL MDL Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 13-14 Batch: WG1482607-1 R Perfluorobutanoic Acid (PFBA) ND ng/l 2.00 Perfluoropentanoic Acid (PFPeA) ND ng/l 2.00 --Perfluorobutanesulfonic Acid (PFBS) ND ng/l 2.00 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND 2.00 ng/l (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND 2.00 ng/l --Perfluoroheptanoic Acid (PFHpA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 --Perfluorooctanoic Acid (PFOA) ND 2.00 ng/l --1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00 (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) ND 2.00 ng/l --Perfluorononanoic Acid (PFNA) ND 2.00 ng/l Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 --1H,1H,2H,2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 (8:2FTS)

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

--

--

--

--

ng/l

ng/l

ng/l

ng/l

ng/l

ng/l

ng/l

ng/l

ng/l

ND

ND

ND

ND

ND

ND

ND

ND

ND

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/14/21 20:00

Analyst: SG

Extraction Method: ALPHA 23528

Extraction Date: 04/05/21 16:10

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 13-14 Batch: WG1482607-1 R

Acceptance Criteria %Recovery Qualifier Surrogate (Extracted Internal Standard) Perfluoro[13C4]Butanoic Acid (MPFBA) 96 58-132 Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 69 62-163 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 91 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 117 12-142 Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 76 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 60-129 90 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 108 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 94 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 180 Q 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 77 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 69-131 100 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 94 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) Q 204 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 24-116 84 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 107 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 64 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 102 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 125 48-131 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 115 22-136

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/07/21 09:11

Analyst: HT

Extraction Method: ALPHA 23528 Extraction Date: 04/06/21 11:54

arameter	Result	Qualifier	Units	RL		MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield L	ab for	sample(s):	01-12	Batch:	WG1482809-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500			
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500			
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250			
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/g	1.00			
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500			
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00			
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250			
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250			
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.500			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500			
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250			
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250			
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.500			
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00			
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500			
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500			
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500			

L2116799

Project Name: TOWN OF CANTON

Project Number: Report Date: 05.0046589.02

04/16/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/07/21 09:11

Analyst: HT Extraction Method: ALPHA 23528 04/06/21 11:54 **Extraction Date:**

Result Qualifier Units RLMDL **Parameter**

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-12 Batch: WG1482809-1

		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	74	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	59	14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	101	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	130	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	72	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	107	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	28	10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	88	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	114	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	121	24-159

Serial_No:04162114:42

L2116799

Project Name: Lab Number: TOWN OF CANTON

Project Number: 05.0046589.02 Report Date: 04/16/21

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528

Analytical Date: 04/13/21 03:47 04/06/21 11:54 **Extraction Date:**

Analyst: HT

> Result Qualifier Units RLMDL **Parameter** Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-12 Batch: WG1482809-1 Perfluorooctanesulfonamide (FOSA) ND ng/g 0.500

Acceptance Criteria **Surrogate (Extracted Internal Standard)** %Recovery Qualifier

Perfluoro[13C8]Octanesulfonamide (M8FOSA) 93 10-117

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/13/21 22:50

Analyst: SG

Extraction Method: ALPHA 23528 Extraction Date: 04/12/21 09:25

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	10-12 Batch	: WG1485008-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	l ND		ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	l ND		ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500		

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date: 04/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/13/21 22:50

Analyst: SG

Extraction Method: ALPHA 23528

Extraction Date: 04/12/21 09:25

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 10-12 Batch: WG1485008-1

			Acceptance
Surrogate (Extracted Internal Standard)	%Recovery		Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	93		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	65		58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	119		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	75		66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	168	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	77		72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	190	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	34		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	90		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	101		24-159

Serial_No:04162114:42

Project Name: TOWN OF CANTON Lab Number: L2116799

Project Number: 05.0046589.02 **Report Date:** 04/16/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528

Analytical Date: 04/13/21 23:11 Extraction Date: 04/12/21 09:25

Analyst: HT

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 10-12
 Batch: WG1485008-1

 Perfluorocotanesulfonamide (FOSA)
 ND
 ng/g
 0.500
 -

Surrogate (Extracted Internal Standard)

Acceptance
%Recovery Qualifier Criteria

Perfluoro[13C8]Octanesulfonamide (M8FOSA) 112 10-117

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

rameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	13-14 Batch:	WG1482607-2			
Perfluorobutanoic Acid (PFBA)	117	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	120	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	127	-		65-157	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	131	-		37-219	-		30
Perfluorohexanoic Acid (PFHxA)	121	-		69-168	-		30
Perfluoropentanesulfonic Acid (PFPeS)	103	-		52-156	-		30
Perfluoroheptanoic Acid (PFHpA)	118	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	111	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	126	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	130	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	122	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	135	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	124	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	123	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	125	-		56-173	-		30
Perfluorononanesulfonic Acid (PFNS)	124	-		48-150	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	122	-		60-166	-		30
Perfluoroundecanoic Acid (PFUnA)	129	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	128	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	117	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	111	-		45-170	-		30
Perfluorododecanoic Acid (PFDoA)	120	-		67-153	-		30

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2116799

Report Date:

<u>Pa</u>	rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Pe	rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s): 13-14	Batch:	WG1482607-2				
	Perfluorotridecanoic Acid (PFTrDA)	109		-		48-158	-		30	
	Perfluorotetradecanoic Acid (PFTA)	122		-		59-182	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	96				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	68				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	89				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	108				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	92				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	109				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	164	Q			14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	84				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	175	Q			10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	65				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	92				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	99				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	79				22-136

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

arameter	LCS %Recovery	LCSD Qual %Recove		%Recovery Limits	RPD	RPD Qual Limits	
erfluorinated Alkyl Acids by Isotope Dilution	n - Mansfield Lab	Associated sample(s):	01-12 Batch:	WG1482809-2			
Perfluorobutanoic Acid (PFBA)	113	-		71-135	-	30	
Perfluoropentanoic Acid (PFPeA)	117	-		69-132	-	30	
Perfluorobutanesulfonic Acid (PFBS)	117	-		72-128	-	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	117	-		62-145	-	30	
Perfluorohexanoic Acid (PFHxA)	114	-		70-132	-	30	
Perfluoropentanesulfonic Acid (PFPeS)	98	-		73-123	-	30	
Perfluoroheptanoic Acid (PFHpA)	108	-		71-131	-	30	
Perfluorohexanesulfonic Acid (PFHxS)	106	-		67-130	-	30	
Perfluorooctanoic Acid (PFOA)	113	-		69-133	-	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	126	-		64-140	-	30	
Perfluoroheptanesulfonic Acid (PFHpS)	107	-		70-132	-	30	
Perfluorononanoic Acid (PFNA)	132	Q -		72-129	-	30	
Perfluorooctanesulfonic Acid (PFOS)	110	-		68-136	-	30	
Perfluorodecanoic Acid (PFDA)	115	-		69-133	-	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	118	-		65-137	-	30	
Perfluorononanesulfonic Acid (PFNS)	113	-		69-125	-	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	126	-		63-144	-	30	
Perfluoroundecanoic Acid (PFUnA)	122	-		64-136	-	30	
Perfluorodecanesulfonic Acid (PFDS)	129	-		59-134	-	30	
Perfluorooctanesulfonamide (FOSA)	111	-		67-137	-	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	111	-		61-139	-	30	
Perfluorododecanoic Acid (PFDoA)	99	-		69-135	-	30	

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2116799

Report Date:

<u>Paran</u>	neter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perflu	orinated Alkyl Acids by Isotope Dilution -	- Mansfield Lab	Associated s	sample(s): 01-12	Batch:	WG1482809-2				
Pe	erfluorotridecanoic Acid (PFTrDA)	112		-		66-139	-		30	
Pe	rfluorotetradecanoic Acid (PFTA)	107		-		69-133	-		30	

Surrogate (Extracted Internal Standard)	%Recovery	Ougl	A / =		
		Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	100				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	74				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95				74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	70				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113				78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	99				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	114				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	82				72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107				79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	101				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	143				19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	106				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25				10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	121				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	132				24-159

Project Name: TOWN OF CANTON

Lab Number:

L2116799

Project Number: 05.0046589.02 Report Date:

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s):	01-12	Batch:	WG1482809-2				
Perfluorooctanesulfonamide (FOSA)	94		-			67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery Qu	LCSD ual %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C8]Octanesulfonamide (M8EOSA)	97			10-117	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

rameter	LCS %Recovery	LCS Qual %Reco		%Recovery al Limits	RPD	Qual	RPD Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01-12 Bate	ch: WG1482809-2			
Perfluorobutanoic Acid (PFBA)	96	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	93	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	96	-		72-128	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	98	-		62-145	-		30
Perfluorohexanoic Acid (PFHxA)	95	-		70-132	-		30
Perfluoropentanesulfonic Acid (PFPeS)	98	-		73-123	-		30
Perfluoroheptanoic Acid (PFHpA)	94	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	98	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	95	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	114	-		64-140	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	85	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	92	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	94	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	96	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	104	-		65-137	-		30
Perfluorononanesulfonic Acid (PFNS)	92	-		69-125	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	104	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	94	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	103	-		59-134	-		30
Perfluorooctanesulfonamide (FOSA)	106	-		67-137	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	112	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	96	-		69-135	-		30

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number: L2116799

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated :	sample(s):	01-12	Batch:	WG1482809-2				
Perfluorotridecanoic Acid (PFTrDA)	101		-			66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	95		-			69-133	-		30	

LCS		LCSD		Acceptance
%Recovery	Qual	%Recovery	Qual	Criteria
102				61-135
113				58-150
120				74-139
105				14-167
111				66-128
104				71-129
115				78-139
106				75-130
84				20-154
103				72-140
110				79-136
106				75-130
90				19-175
69				31-134
111				61-155
25				10-117
74				34-137
102				54-150
106				24-159
	%Recovery 102 113 120 105 111 104 115 106 84 103 110 106 90 69 111 25 74 102	%Recovery Qual 102 113 120 105 111 104 115 106 84 103 110 106 90 69 111 25 74 102	%Recovery Qual %Recovery 102 113 120 105 111 104 115 106 84 103 110 106 90 69 111 25 74 102	%Recovery Qual %Recovery Qual 102 113 120 105 111 104 115 106 84 103 110 106 90 69 111 25 74 102

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

rameter	LCS %Recovery	LCSi Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
rfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	10-12 Batch:	WG1485008-2			
Perfluorobutanoic Acid (PFBA)	104	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	109	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	114	-		72-128	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	118	-		62-145	-		30
Perfluorohexanoic Acid (PFHxA)	109	-		70-132	-		30
Perfluoropentanesulfonic Acid (PFPeS)	91	-		73-123	-		30
Perfluoroheptanoic Acid (PFHpA)	107	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	96	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	110	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	116	-		64-140	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	111	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	123	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	108	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	112	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	113	-		65-137	-		30
Perfluorononanesulfonic Acid (PFNS)	113	-		69-125	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	110	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	122	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	121	-		59-134	-		30
Perfluorooctanesulfonamide (FOSA)	104	-		67-137	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	94	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	106	-		69-135	-		30

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2116799

Report Date:

<u>Par</u>	ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Pei	fluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s): 10-	·12 Batch:	WG1485008-2				
	Perfluorotridecanoic Acid (PFTrDA)	114		-		66-139	-		30	
	Perfluorotetradecanoic Acid (PFTA)	105		-		69-133	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	91				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	63				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86				74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	118				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	82				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	106				78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	172	Q			20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75				72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95				79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	197	Q			19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	88				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	99				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	14				10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	95				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	107				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	114				24-159

Project Name: TOWN OF CANTON

Lab Number:

L2116799

Project Number: 05.0046589.02 Report Date:

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s):	10-12	Batch:	WG1485008-2				
Perfluorooctanesulfonamide (FOSA)	95		-			67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery Qua	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	108			10-117	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	otope Dilutio	n - Mansfield	Lab Assoc	iated sample(s):	13-14	QC Batch	ID: WG148260	7-3	QC Sample:	L21164	28-01	Client ID: MS
Perfluorobutanoic Acid (PFBA)	ND	36.2	42.0	116		-	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	ND	36.2	43.1	119		-	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	32.2	41.0	127		-	-		65-157	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	33.9	42.7	126		-	-		37-219	-		30
Perfluorohexanoic Acid (PFHxA)	ND	36.2	42.7	118		-	-		69-168	-		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	34.1	35.2	103		-	-		52-156	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	36.2	42.1	116		-	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	33.1	36.7	111		-	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	ND	36.2	45.4	125		-	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	34.5	43.4	126		-	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	34.5	42.7	124		-	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	ND	36.2	47.6	131		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	33.6	40.9	122		-	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	ND	36.2	46.4	128		-	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	34.8	43.1	124		-	-		56-173	-		30
Perfluorononanesulfonic Acid (PFNS)	ND	34.9	42.5	122		-	-		48-150	-		30
N-Methyl Perfluorooctanesulfonamidoacetic	ND	36.2	48.2	129		-	-		60-166	-		30
Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA)	ND	36.2	44.9	124		-	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	35	46.7	134		-	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	ND	36.2	42.9	118		-	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic	ND	36.2	37.7	101		-	-		45-170	-		30
Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA)	ND	36.2	40.9	113		-	-		67-153	-		30

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

3 0.000.040.0	Native	MS Added	MS Found	MS %Recovery	Oual	MSD Found	MSD %Recovery	Ougl	Recovery Limits		Qual	RPD Limits
Parameter	Sample	Added	round	76Recovery	Qual	Fouriu	76Recovery	Qual	LIIIIII	RPD	Quai	LIIIIIIS
Perfluorinated Alkyl Acids by Sample	Isotope Dilution	- Mansfield	Lab Assoc	iated sample(s):	13-14	QC Batch	ID: WG148260	7-3	QC Sample:	L211642	8-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	36.2	45.5	125		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	36.2	45.0	124		-	-		59-182	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	725	1100F	152		-	-		57-162	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	34.2	39.6	116		-	-		69-143	-		30
Perfluorohexadecanoic Acid (PFHxDA)	ND	36.2	51.8	143		-	-		40-167	-		30
Perfluorooctadecanoic Acid (PFODA)) ND	36.2	73.8	204	Q	-	-		10-119	-		30

	MS	3	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	146				10-162	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	71				12-142	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	124				14-147	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	73				10-165	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	81				27-126	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	70				24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	97				55-137	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	89				62-124	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	73				57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	84				60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	106				71-134	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	108				48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	106				22-136	
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	62				10-206	

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2116799

Report Date:

04/16/21

	Native	MS	MS	MS		MSD	MSD	Recovery		RP.	D
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Lim	ıits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 13-14 QC Batch ID: WG1482607-3 QC Sample: L2116428-01 Client ID: MS Sample

MS	MSD	Acceptance	
% Recovery Qualifier	% Recovery Qualifier	Criteria	
85		58-132	
67		62-163	
39		10-112	
97		69-131	
89		62-129	
81		59-139	
88		70-131	
	85 67 39 97 89 81	% Recovery Qualifier % Recovery Qualifier 85 67 39 97 89 81 81	% Recovery Qualifier % Recovery Qualifier Criteria 85 58-132 67 62-163 39 10-112 97 69-131 89 62-129 81 59-139

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilutio	on - Mansfield	d Lab Assoc	ciated sample(s):	: 01-12	QC Batch	ID: WG148280	9-3 W	G1482809-4	QC Sa	ample: L	.2116932-02
Perfluorobutanoic Acid (PFBA)	ND	5.46	6.09	111		5.69	111		71-135	7		30
Perfluoropentanoic Acid (PFPeA)	ND	5.46	6.30	115		5.90	116		69-132	7		30
Perfluorobutanesulfonic Acid (PFBS)	ND	4.85	5.72	118		5.43	120		72-128	5		30
IH,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	5.11	5.90	115		5.79	121		62-145	2		30
Perfluorohexanoic Acid (PFHxA)	ND	5.46	6.03	110		5.70	112		70-132	6		30
Perfluoropentanesulfonic Acid PFPeS)	ND	5.14	5.04	98		4.86	101		73-123	4		30
Perfluoroheptanoic Acid (PFHpA)	ND	5.46	5.99	110		5.71	112		71-131	5		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	4.99	5.19	104		4.99	107		67-130	4		30
Perfluorooctanoic Acid (PFOA)	ND	5.46	6.05	111		5.95	117		69-133	2		30
H,1H,2H,2H-Perfluorooctanesulfonic	ND	5.2	6.36	122		5.80	119		64-140	9		30
Perfluoroheptanesulfonic Acid PFHpS)	ND	5.2	5.90	113		7.44	153	Q	70-132	23		30
Perfluorononanoic Acid (PFNA)	ND	5.46	7.00	128		6.68	131	Q	72-129	5		30
Perfluorooctanesulfonic Acid (PFOS)	ND	5.07	5.80	114		5.67	120		68-136	2		30
Perfluorodecanoic Acid (PFDA)	ND	5.46	6.45	118		5.91	116		69-133	9		30
H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	5.24	6.14	117		6.00	122		65-137	2		30
Perfluorononanesulfonic Acid (PFNS)	ND	5.26	6.10	116		7.78	158	Q	69-125	24		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	5.46	6.52	119		7.64	150	Q	63-144	16		30
Perfluoroundecanoic Acid (PFUnA)	ND	5.46	6.56	120		5.99	117		64-136	9		30
Perfluorodecanesulfonic Acid (PFDS)	ND	5.27	6.70	127		8.92	181	Q	59-134	28		30
Perfluorooctanesulfonamide (FOSA)	ND	5.46	5.86	107		5.54	108		67-137	6		30
I-Ethyl Perfluorooctanesulfonamidoacetic ccid (NEtFOSAA)	ND	5.46	6.04	111		5.81	114		61-139	4		30
Perfluorododecanoic Acid (PFDoA)	ND	5.46	5.65	103		4.77	93		69-135	17		30

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilutio	n - Mansfield	Lab Associ	iated sample(s):	01-12	QC Batch	ID: WG148280	9-3 WG1482809-4	QC S	Sample: I	_2116932-02
Perfluorotridecanoic Acid (PFTrDA)	ND	5.46	5.98	109		4.12	81	66-139	37	Q	30
Perfluorotetradecanoic Acid (PFTA)	ND	5.46	6.25	114		5.16	101	69-133	19		30

	MS	3	M	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	146		181	Q	19-175	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	52		64		14-167	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	124		195	Q	20-154	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72		92		34-137	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65		68		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	99		112		61-155	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	91		98		75-130	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	71		72		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83		89		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		152	Q	78-139	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115		136		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	101		133		24-159	
Perfluoro[13C4]Butanoic Acid (MPFBA)	91		96		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	68		71		58-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	19		39		10-117	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95		105		79-136	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88		90		75-130	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	73		76		72-140	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88		132		74-139	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	otope Dilutio	n - Mansfield	d Lab Assoc	iated sample(s):	01-12	QC Batch	D: WG148280	9-5 W	G1482809-6	QC S	ample: L	2116648-04
Perfluorobutanoic Acid (PFBA)	ND	5.69	6.25	110		6.36	111		71-135	2		30
Perfluoropentanoic Acid (PFPeA)	ND	5.69	6.50	114		6.57	114		69-132	1		30
Perfluorobutanesulfonic Acid (PFBS)	ND	5.05	6.01	119		6.17	121		72-128	3		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	5.32	6.39	120		6.86	127		62-145	7		30
Perfluorohexanoic Acid (PFHxA)	ND	5.69	6.49	114		6.63	115		70-132	2		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	5.35	4.91	92		5.03	93		73-123	2		30
Perfluoroheptanoic Acid (PFHpA)	ND	5.69	6.43	113		6.64	115		71-131	3		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	5.2	5.46	105		5.50	105		67-130	1		30
Perfluorooctanoic Acid (PFOA)	ND	5.69	6.64	117		6.79	118		69-133	2		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.50	5.41	8.99	101		6.62	57	Q	64-140	30		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	5.41	6.05	112		6.22	114		70-132	3		30
Perfluorononanoic Acid (PFNA)	ND	5.69	7.56	133	Q	7.50	130	Q	72-129	1		30
Perfluorooctanesulfonic Acid (PFOS)	ND	5.28	5.91	112		6.11	114		68-136	3		30
Perfluorodecanoic Acid (PFDA)	ND	5.69	6.47	114		6.66	116		69-133	3		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	5.46	6.02	110		5.99	108		65-137	0		30
Perfluorononanesulfonic Acid (PFNS)	ND	5.47	6.25	114		6.60	119		69-125	5		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	5.69	6.83	120		8.42	146	Q	63-144	21		30
Perfluoroundecanoic Acid (PFUnA)	ND	5.69	7.50	132		7.29	127		64-136	3		30
Perfluorodecanesulfonic Acid (PFDS)	ND	5.48	7.12	130		7.03	127		59-134	1		30
Perfluorooctanesulfonamide (FOSA)	ND	5.69	5.48	96		5.36	93		67-137	2		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	5.69	5.79	102		5.82	101		61-139	1		30
Perfluorododecanoic Acid (PFDoA)	ND	5.69	6.06	107		5.96	104		69-135	2		30_

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Is Client ID: MS Sample	sotope Dilutio	n - Mansfield	Lab Assoc	iated sample(s):	01-12	QC Batch	ID: WG148280	9-5 WG1482809-	6 QC	Sample: L2116648-04
Perfluorotridecanoic Acid (PFTrDA)	ND	5.69	7.05	124		7.28	127	66-139	3	30
Perfluorotetradecanoic Acid (PFTA)	ND	5.69	6.52	115		6.81	118	69-133	4	30

	MS	5	M	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	225	Q	220	Q	19-175
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	130		131		14-167
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	186	Q	184	Q	20-154
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	82		106		34-137
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	78		77		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	97		110		61-155
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95		101		75-130
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	75		76		66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	88		88		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108		111		78-139
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	120		131		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	122		125		24-159
Perfluoro[13C4]Butanoic Acid (MPFBA)	92		97		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	62		65		58-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	81		86		10-117
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100		102		79-136
Perfluoro[13C8]Octanoic Acid (M8PFOA)	94		92		75-130
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78		80		72-140
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87		88		74-139

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is Sample	otope Dilution	n - Mansfield	d Lab Assoc	iated sample(s):	10-12	QC Batch	ID: WG148500	8-3	QC Sample:	L21175	72-01	Client ID:	MS
Perfluorobutanoic Acid (PFBA)	ND	6.34	6.68	104		-	-		71-135	-		30	
Perfluoropentanoic Acid (PFPeA)	ND	6.34	6.93	108		-	-		69-132	-		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	5.63	6.38	113		-	-		72-128	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	5.93	6.70	113		-	-		62-145	-		30	
Perfluorohexanoic Acid (PFHxA)	ND	6.34	6.92	108		-	-		70-132	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	5.96	5.37	90		-	-		73-123	-		30	
Perfluoroheptanoic Acid (PFHpA)	ND	6.34	6.65	104		-	-		71-131	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	5.79	5.74	99		-	-		67-130	-		30	
Perfluorooctanoic Acid (PFOA)	1.76	6.34	8.82	111		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	6.03	6.67	111		-	-		64-140	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	6.03	6.65	110		-	-		70-132	-		30	
Perfluorononanoic Acid (PFNA)	ND	6.34	7.91	122		-	-		72-129	-		30	
Perfluorooctanesulfonic Acid (PFOS)	ND	5.88	6.56	107		-	-		68-136	-		30	
Perfluorodecanoic Acid (PFDA)	ND	6.34	7.22	112		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	6.08	6.52	107		-	-		65-137	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	6.1	6.85	112		-	-		69-125	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	6.34	7.50	118		-	-		63-144	-		30	
Perfluoroundecanoic Acid (PFUnA)	ND	6.34	7.48	117		-	-		64-136	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	6.11	6.72	110		-	-		59-134	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	6.34	5.41	85		-	-		67-137	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic	ND	6.34	6.57	104		-	-		61-139	-		30	
Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA)	ND	6.34	6.74	106		-	-		69-135	-		30	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	sotope Dilutio	n - Mansfield	Lab Assoc	iated sample(s):	10-12	QC Batch	ID: WG148500	8-3	QC Sample:	L211757	72-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	6.34	6.21	98		-	-		66-139	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	6.34	7.36	116		-	-		69-133	-		30

	MS	5	MSD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	182	Q		19-175	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111			14-167	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	161	Q		20-154	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	48			34-137	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	48			31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	85			61-155	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	78			75-130	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	62	Q		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	72			71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95			78-139	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	93			54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	40			24-159	
Perfluoro[13C4]Butanoic Acid (MPFBA)	76			61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	53	Q		58-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	78			10-117	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	86			79-136	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	74	Q		75-130	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	66	Q		72-140	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	79			74-139	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799 **Report Date:** 04/16/21

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - Mai ID: DUP Sample	nsfield Lab Associated s			32607-4	QC Sample: L2116428-02	Client
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/l	NC	30	
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/l	NC	30	
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC	30	
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/l	NC	30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30	
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30	
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/l	NC	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC	30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30	
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30	
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30	
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30	
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC	30	
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC	30	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution - Mans ID: DUP Sample	sfield Lab Associated sa	ample(s): 13-14 QC E	Batch ID: WG148	32607-4 (QC Sample: L2	116428-02 Client
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC		30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC		30
Perfluorohexadecanoic Acid (PFHxDA)	ND	ND	ng/l	NC		30
Perfluorooctadecanoic Acid (PFODA)	ND	ND	ng/l	NC		30

Surrogate (Extracted Internal Standard)	%Recovery Quali	fier %Recovery Qualifie	Acceptance er Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	84	81	58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	67	66	62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	90	89	70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	66	61	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74	68	57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86	81	60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108	105	71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90	87	62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	120	106	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	79	73	59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95	87	69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88	81	62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	139	120	10-162	

Lab Number:

L2116799

Project Number: 05.0046589.02

TOWN OF CANTON

Report Date:

04/16/21

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 13-14 QC Batch ID: WG1482607-4 QC Sample: L2116428-02 Client

ID: DUP Sample

Project Name:

Surrogate (Extracted Internal Standard)	%Recovery Qualif	fier %Recovery Qualifier	Acceptance Criteria	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	65	68	24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101	88	55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	28	21	10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	79	69	27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	112	96	48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	126	99	22-136	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	102	77	10-165	
Perfluoro[13C2]Hexadecanoic Acid (M2PFHxDA)	71	63	10-206	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

L2116799 04/16/21 Report Date:

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - MD: DUP Sample	•				QC Sample: L2117572-03 Client
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/g	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/g	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/g	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/g	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/g	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/g	NC	30
Perfluorooctanoic Acid (PFOA)	0.487	0.421	ng/g	15	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/g	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/g	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/g	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/g	NC	30

Project Name: TOWN OF CANTON

Lab Number:

L2116799

Project Number: 05.0046589.02

04/16/21 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limit	3
Perfluorinated Alkyl Acids by Isotope Dilution ID: DUP Sample	- Mansfield Lab Associated sa	mple(s): 10-12 QC E	Batch ID: WG148	35008-4	QC Sample: L21175	72-03 Client
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/g	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/g	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/g	NC	30	
PFOA/PFOS, Total	0.487	0.421	ng/g	15	30	
PFAS, Total (5)	0.487	0.421	ng/g	15	30	

Surrogate (Extracted Internal Standard)	9/ Boowery	Qualifier	0/ Boowery	Qualifier	Acceptance Criteria	
Surrogate (Extracted internal Standard)	76Recovery	Qualifier	%Recovery	Qualifier	Citteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	54	Q	59	Q	61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	42	Q	45	Q	58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	74		77		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	103		108		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	51	Q	55	Q	66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	64	Q	67	Q	71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	90		93		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	69	Q	72	Q	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	154		155	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	61	Q	61	Q	72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81		85		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	74	Q	76		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	172		173		19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	36		37		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	83		84		61-155	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	41		43		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	88		91		54-150	

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2116799

Report Date:

04/16/21

Project Number: 05.0046589.02

TOWN OF CANTON

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 10-12 QC Batch ID: WG1485008-4 QC Sample: L2117572-03 Client

ID: DUP Sample

Project Name:

Surrogate (Extracted Internal Standard) %Recovery Qualifier %Recovery Qualifier Criteria

Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 49 48 24-159

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 10-12 QC Batch ID: WG1485008-4 QC Sample: L2117572-03 Client

ID: DUP Sample

Perfluorooctanesulfonamide (FOSA) ND ND ng/g NC 30

Surrogate (Extracted Internal Standard)

**Recovery Qualifier %Recovery Qualifier Criteria*

Perfluoro[13C8]Octanesulfonamide (M8FOSA)

79

80

10-117

INORGANICS & MISCELLANEOUS

Serial_No:04162114:42

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-01

Client ID: GZ-101S(0-1')
Sample Location: CANTON, CT

Date Collected:

04/02/21 08:50

Date Received:

04/02/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	0.164		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	0.141		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	0.152		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	83.1		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Serial_No:04162114:42

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02 Lab Number:

L2116799

Report Date:

04/16/21

SAMPLE RESULTS

Lab ID: L2116799-02

Client ID: GZ-101D(2-3.7') Sample Location: CANTON, CT

Date Collected: 04/02/21 09:45

Date Received: 04/02/21

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
sfield Lab									
0.232		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
0.290		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
0.261		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
eld Lab									
86.6		%	0.100		1	-	04/05/21 14:10	121,2540G	MC
	osfield Lab 0.232 0.290 0.261 eld Lab	0.232 0.290 0.261 eld Lab	0.232 % 0.290 % 0.261 % eld Lab	0.232 % 0.010 0.290 % 0.010 0.261 % 0.010 eld Lab	0.232 % 0.010 0.290 % 0.010 0.261 % 0.010 eld Lab	Result Qualifier Units RL MDL Factor asfield Lab 0.232 % 0.010 1 0.290 % 0.010 1 0.261 % 0.010 1 eld Lab	Result Qualifier Units RL MDL Factor Prepared 0.232 % 0.010 1 0.290 % 0.010 1 0.261 % 0.010 1 eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed asfield Lab 0.232 % 0.010 1 - 04/15/21 08:32 0.290 % 0.010 1 - 04/15/21 08:32 0.261 % 0.010 1 - 04/15/21 08:32 eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed Method 0.232 % 0.010 1 - 04/15/21 08:32 1,9060A 0.290 % 0.010 1 - 04/15/21 08:32 1,9060A 0.261 % 0.010 1 - 04/15/21 08:32 1,9060A eld Lab

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

L2116799 Report Date: 04/16/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2116799-03 04/02/21 10:10

Client ID: GZ-102S(0-2') Date Received: 04/02/21 Not Specified Sample Location: CANTON, CT Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mai	nsfield Lab									
Total Organic Carbon (Rep1)	2.00		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.98		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.99		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	80.2		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-04

Client ID: GZ-103S(0-2') Sample Location: CANTON, CT Date Collected:

04/02/21 10:30

Date Received:

04/02/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
nsfield Lab									
1.82		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
1.73		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
1.77		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
eld Lab									
80.8		%	0.100		1	-	04/05/21 14:10	121,2540G	MC
	1.82 1.73 1.77 eld Lab	1.82 1.73 1.77 eld Lab	1.82 % 1.73 % 1.77 % eld Lab	nsfield Lab 1.82 % 0.010 1.73 % 0.010 1.77 % 0.010 eld Lab	1.82 % 0.010 1.73 % 0.010 1.77 % 0.010 eld Lab	Result Qualifier Units RL MDL Factor nsfield Lab 1.82 % 0.010 1 1.73 % 0.010 1 1.77 % 0.010 1 eld Lab	Result Qualifier Units RL MDL Factor Prepared 1.82 % 0.010 1 - 1.73 % 0.010 1 - 1.77 % 0.010 1 - eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed nsfield Lab 1.82 % 0.010 1 - 04/15/21 08:32 1.73 % 0.010 1 - 04/15/21 08:32 1.77 % 0.010 1 - 04/15/21 08:32 eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed Method nsfield Lab 1.82 % 0.010 1 - 04/15/21 08:32 1,9060A 1.73 % 0.010 1 - 04/15/21 08:32 1,9060A 1.77 % 0.010 1 - 04/15/21 08:32 1,9060A eld Lab

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date:

04/16/21

SAMPLE RESULTS

Lab ID: L2116799-05

Client ID: GZ-104S(0-2')
Sample Location: CANTON, CT

Date Collected:

04/02/21 11:20

Date Received: Field Prep:

04/02/21 Not Specified

allon. Other ore,

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	3.44		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	2.95		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	3.19		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	60.7		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02 Lab Number:

L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-06

Client ID: GZ-105S(0-2') Sample Location: CANTON, CT

Date Collected:

04/02/21 11:35

Date Received:

04/02/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mai	nsfield Lab									
Total Organic Carbon (Rep1)	2.14		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	2.27		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	2.20		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	79.5		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

L2116799

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02 Report D

Report Date: 04/16/21

Lab Number:

SAMPLE RESULTS

Lab ID: L2116799-07 Date Collected: 04/02/21 11:50

Client ID: GZ-106S(0-2') Date Received: 04/02/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	1.52		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.46		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.49		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansfi	ield Lab									
Solids, Total	62.9		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

L2116799 **Report Date:** 04/16/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2116799-08 04/02/21 12:10

Client ID: GZ-107S(0-2') Date Received: 04/02/21 Not Specified Sample Location: CANTON, CT Field Prep:

Sample Depth:

Matrix: Soil

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
sfield Lab									
0.784		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
0.606		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
0.695		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
eld Lab									
86.7		%	0.100		1	-	04/05/21 14:10	121,2540G	МС
	0.784 0.606 0.695 eld Lab	0.784 0.606 0.695 eld Lab	0.784 % 0.606 % 0.695 % eld Lab	nsfield Lab 0.784 % 0.010 0.606 % 0.010 0.695 % 0.010 eld Lab	0.784 % 0.010 0.606 % 0.010 0.695 % 0.010 eld Lab	Result Qualifier Units RL MDL Factor 0.5field Lab 0.784 % 0.010 1 0.606 % 0.010 1 0.695 % 0.010 1 eld Lab	Result Qualifier Units RL MDL Factor Prepared 0.5field Lab 0.784 % 0.010 1 0.606 % 0.010 1 0.695 % 0.010 1 eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed 0.5field Lab 0.784 % 0.010 1 - 04/15/21 08:32 0.606 % 0.010 1 - 04/15/21 08:32 0.695 % 0.010 1 - 04/15/21 08:32 eld Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed Method 0.5field Lab 0.784 % 0.010 1 - 04/15/21 08:32 1,9060A 0.606 % 0.010 1 - 04/15/21 08:32 1,9060A 0.695 % 0.010 1 - 04/15/21 08:32 1,9060A eld Lab

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: Date Collected: L2116799-09 04/02/21 13:10

Client ID: GZ-108S(0-2') Date Received: 04/02/21 Not Specified Sample Location: CANTON, CT Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	sfield Lab									
Total Organic Carbon (Rep1)	1.05		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.06		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.05		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansfi	eld Lab									
Solids, Total	86.7		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

04/16/21

SAMPLE RESULTS

Lab ID: L2116799-10

Client ID: GZ-109S(0-2')
Sample Location: CANTON, CT

Date Collected: (

04/02/21 13:37

Field Prep:

Date Received: 04/02/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	1.62		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.68		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.65		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansfi	eld Lab									
Solids, Total	80.6		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-11

Client ID: GZ-110S(0-2')
Sample Location: CANTON, CT

Date Collected:

04/02/21 13:52

Date Received: Field Prep:

04/02/21 Not Specified

Sample Depth:

Matrix: Soil

Matrix.	Ooli									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab									
Total Organic Carbon (Rep1)	1.34		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.25		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.29		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mans	sfield Lab									
Solids, Total	81.2		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02 Lab Number:

L2116799

Report Date: 04/16/21

SAMPLE RESULTS

Lab ID: L2116799-12

Client ID: GZ-111S(0-2') Sample Location: CANTON, CT

Date Collected:

04/02/21 14:10

Date Received: Field Prep:

04/02/21 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	1.05		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	1.09		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	1.07		%	0.010		1	-	04/15/21 08:32	1,9060A	SM
General Chemistry - Mansfi	ield Lab									
Solids, Total	83.6		%	0.100		1	-	04/05/21 14:10	121,2540G	MC

L2116799

Lab Number:

Project Name: TOWN OF CANTON

hod Blank Analysis

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab for sam	ole(s): 01-	·12 Batc	h: WG	1483543-1				
Total Organic Carbon (Rep1)	ND	%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Rep2)	ND	%	0.010		1	-	04/15/21 08:32	1,9060A	SM
Total Organic Carbon (Average)	ND	%	0.010		1	-	04/15/21 08:32	1,9060A	SM

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

04/16/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Organic Carbon - Mansfield Lab A	Associated sample(s):	01-12	Batch: WG14835	43-2					
Total Organic Carbon (Rep1)	110		-		75-125	-		25	
Total Organic Carbon (Rep2)	107		-		75-125	-		25	
Total Organic Carbon (Average)	108		-		75-125	-		25	

Matrix Spike Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number: L2116799

Report Date: 04/16/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits RF	RPD PD Qual Limits
Total Organic Carbon - Mansfi	eld Lab Associ	iated sampl	e(s): 01-12	QC Batch ID	: WG1483543-4	QC Sample: L21	16799-01 Client IE	D: GZ-101S(0-1')
Total Organic Carbon (Rep1)	0.164	1.38	1.57	102	-	-	75-125	- 25
Total Organic Carbon (Rep2)	0.141	1.39	1.61	105	-	-	75-125	- 25
Total Organic Carbon - Mansfi	eld Lab Associ	iated sample	e(s): 01-12	QC Batch ID	: WG1483543-5	QC Sample: L21	16799-03 Client IE	D: GZ-102S(0-2')
Total Organic Carbon (Rep1)	2.00	1.59	3.42	89	-	-	75-125	- 25
Total Organic Carbon (Rep2)	1.98	1.58	3.84	118	-	-	75-125	- 25

Lab Duplicate Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2116799

Report Date:

04/16/21

Parameter	Native Sar	nple	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Mansfield Lab Associated sample((s): 01-12 Q	C Batch ID: V	VG1482573-1 (QC Sample: L211	6799-01 C	lient ID: G	Z-101S(0-1')
Solids, Total	83.1		83.0	%	0		10
Total Organic Carbon - Mansfield Lab Associated samp	ole(s): 01-12	QC Batch ID:	: WG1483543-3	QC Sample: L2	116799-01	Client ID:	GZ-101S(0-1')
Total Organic Carbon (Rep1)	0.164		0.161	%	2		25
Total Organic Carbon (Rep2)	0.141		0.254	%	57	Q	25
Total Organic Carbon (Average)	0.152		0.208	%	31	Q	25

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2116799
Report Date: 04/16/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2116799-01A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-01B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-01X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-01X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-02A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-02B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-02X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-02X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-03A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-03B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-03X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-03X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-04A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-04B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-04X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-04X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-05A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-05B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-05X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-05X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-06A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)

Lab Number: L2116799

Report Date: 04/16/21

Project Name: TOWN OF CANTON **Project Number:** 05.0046589.02

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2116799-06B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-06X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-06X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-07A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-07B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-07X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-07X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-08A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-08B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-08X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-08X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-09A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-09B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-09X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-09X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-10A	Plastic 8oz unpreserved	Α	NA		3.8	Y	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-10B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-10X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-10X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-11A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-11B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-11X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2116799-11X9	Tumble Vessel	NA	NA			Υ	Absent		-
L2116799-12A	Plastic 8oz unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2116799-12B	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		A2-TS(7)
L2116799-12X	Plastic 250ml unpreserved Extracts	NA	NA			Υ	Absent		A2-SPLP-537-ISOTOPE(14)

Lab Number: L2116799

Report Date: 04/16/21

A2-537-ISOTOPE(14)

Container Info	rmation	Initial Final Temp						Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2116799-12X9	Tumble Vessel	NA	NA			Υ	Absent		-		
L2116799-13A	Plastic 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14)		
L2116799-14A	Plastic 250ml unpreserved	Α	NA		3.8	Υ	Absent		A2-537-ISOTOPE(14)		

3.8

Absent

NA

Α

Container Comments

L2116799-14B

Project Name:

Project Number: 05.0046589.02

L2116799-13A FB not transferred, now considered a trip blank.

Plastic 250ml unpreserved

TOWN OF CANTON

Serial_No:04162114:42 **Lab Number:** L2116799

Report Date: 04/16/21

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
	51111	101772-00-0

Project Name:

Project Number: 05.0046589.02

TOWN OF CANTON

Project Name:TOWN OF CANTONLab Number:L2116799Project Number:05.0046589.02Report Date:04/16/21

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

From unutions, concentrations of moisture content, where applicable. (Dod report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAH, using Solid Phase Microaytraction (SPME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:TOWN OF CANTONLab Number:L2116799Project Number:05.0046589.02Report Date:04/16/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:TOWN OF CANTONLab Number:L2116799Project Number:05.0046589.02Report Date:04/16/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: TOWN OF CANTON Lab Number: L2116799
Project Number: 05.0046589.02 Report Date: 04/16/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

A	CHAIN	OF CU	STOD	Y PAG	E	2	Date	Rec'd	l in Lal	o:	4/9	Al		A	LPHA .	Job#: W116799	
ALPHA		Project	Informatio	on	Sec.	DEPOR	Rep	ort Ir	nforma	ation -	Data	Delive	rables	. E	Billing Ir	nformation	
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-9300		ame: Town		Contra		O.F	AX	-	M E	MAIL			A	Same as	s Client info PO#:	
FAX: 508-898-9193 Client Informatio	FAX: 508-822-3288	Project Lo	-	canton,				DEx				verable	-				Name and Address of the Owner, where
SIA TOUR	Monte discussion of			-	a reservi		Regu	ılator	y Req	uirem	ents/F	Report	Limit	5			300
Client: GZA		The second secon	05,0046	The second second		55			Progra				1	riteria			
	Husterhay Blod, 3	LINE F	anager. Ri	choicl	D310	1/2/5	MA N	ACP F	PRESI	JMPTI	VE CE	RTAIN	ITY	CT R	EASON	NABLE CONFIDENCE PE	ROTO .
Glasterbay	CT OCO	The same of the sa		No. of the last	Short Service	Control of the	ΠY	es L	l No	Are	VCP A	nalytica	Metho	ds Rec	quired?		100004047
Phone: /	/	Turn-A	round Tim	1e				es I		Is M	atrix Sp	ike (MS	S) Requ	rired or Confid	this SD ence Pro	G? (If yes see note in Comn ptocols) Required?	nents)
Fax:		Standa	rd 🗆	RUSH (see) as	nterned if ann as	prower)	DY	es E	J No	Are	7 7	(Reas	7	7 7	/ /	1 1	T
Email: pichard	dannier @ 929				Time:			0	V	/	//	/	//	//	//	SAMPLE HANDLI	NG T
☐ These samples ha	ve been previously analyzed	by Alpha	1000				ANALYO	0/2	/	/ /		/	/ /		//	Filtration	L
Other Project S	pecific Requirements	/Comments/Dete	ection Limi	ts:	nadornad		NA	15	/ /		/	/ /	/	//	///	Done Not needed	
If MS is required , in (Note: All CAM met	dicate in Sample Specific Co	emments which sample equire MS every 20 sc	es and what to oil samples)	ests MIS to be	penomou		4	1	/		//	/	/	/ /	//	Lab to do	B 0
							1/	.</td <td>/</td> <td>//</td> <td>/</td> <td>/</td> <td>/ /</td> <td></td> <td>/ /</td> <td>Preservation ☐ Lab to do</td> <td>Ţ</td>	/	//	/	/	/ /		/ /	Preservation ☐ Lab to do	Ţ
ALPHA Lab ID			Colle	ection	Sample	Sampler's	2 P	To	1 1	/ /	1	/ /	/	//	/ /	(Please specify below)	e to
(Lab Use Only)	Sample	(O-1')	Date	Time	Matrix	Initials			//	_/_	1	-	-	H	-1-1	Sample Specific Comme	nis o
16799-01	62-1015	(02')TL	4.2.21	850	5	TL	X	×	-	_		-	+	-	-		
-07	GZ-101 D 1	(2-3,7')	4.2.21	945	5	TL	X	×				-	+	-	-		
-03	62-1025	(0-2)	4.2.21	1010	5	TL	X	X		_		_	-	1			
-04	62-1035	(0-2')	4.2.21	1030	5	TL	X	X									
-05	6-2-1045	(0-2')	4.2.21	1120	5	TL	X	×									
-06	62-1055	(0-2')	4.2.21	1135	5	TL	×	X									
207	GZ-1065	(0-21)	42.21	1150	5	TL	X	X					1				
-oh	62-1075	(0-21)	4.2.21	1210	5	TL	X	X		_	1		4				-
_64	62-108 5	(c-2')	4.2.21	1310	5	TL	×	X						1			-
-(0	62-1095	(0-2')	4.2.2)	1337	5	TL	X	X			1		_	Ш			
PLEASE ANSWI	ER QUESTIONS ABOVE		/			tainer Type	-	15					-	-	-	Please print clearly, legible pletely. Samples can not	be logged
IS YOUR F	PROJECT F	-/-				reservative	Nie	No.	Por	havia:	w: ^		+	Date/	Time	in and turnaround time clo start until any ambiguities	are resolv
	MAMCP or CTRCP?			. ~	1,000	Date/Time Received By)	40 Las			All samples submitted are Alpha's Terms and Condit	subject to tions.			
BIONESO MIDOR	41	The state of the s	ILU SON		ub	5 186	1	W	ne	16	100	/	4	12/2	1/815	See reverse side.	
Page 115 of 116	(str () 111 lb-	-	MIN		4/5	121095	1	1, th	ullh	_			4	15/21	0915	10:25	

A	CHAIN	OF CU	STO	Y PAI	Z 2	of 2	Date	Rec'o	in Lai	b: <	15,	121			Al	PHA	Job#: 4116799	
ALPHA		Project	t Informati	on	SUM		Rep	ort Ir	nforma	ation	- Data	Deli	verat	oles	В	illing	Information	
WESTBORO, MA TEL: 508-898-9220	MANSFIELD, MA TEL: 508-822-9300			The second second	C #		D.F.	20164.19	and the same		MAIL				V	same a	as Client info PO#:	
FAX: 508-898-9193	FAX: 508-822-3288	-	Name: Tow	7y				DEx			dd'i De	elivera	bles					
Client Informatio	neAle sas mastrum			unten,	_		Requ	lator	y Req	uiren	nents/	Repo	ort Lir	nits	-			
Client: GZA		Project	# 05,00	4658	1.02		TO SECTION	Manual	Progra	the many		00000			teria			
Address: 95 Glo	istaly Blue, 3rd Pl	Project	Manager: R	chard	Des	reside				X727	WE C	EDT/	VINITS			ASO	NABLE CONFIDENCE PROTO)
Glastonbury,	CT/06108		Quote #:				1000000	200	All Indiana	100000110	No.	2000	2000			Marie I	NABEL CON IDENCE	•
Phone:		Turn-	Around Tin	1e		250	D Y	es C	J No J No	Are Is M	MCP A	knalyti bike ((al Me MS) R	etnoa: leguir	s Keqi ed on	this SD	OG? (If yes see note in Comments)	1
Fax:		1			10/44		100	es 🗆									rotocols) Required?	
Feedby N 1	1 One - cch	Stand	lard 🗆	RUSH	ondernost if you ap	throward.		7	7	7	1	7 7	7	7	1	1		TO
	des rorg; ors@gza.ccm	Date D	ue:		Time:		ANALYSIC	2/1	Y	/	/ /	/		1	/	/ /	SAMPLE HANDLING	O T A
	we been previously analyzed by Alp pecific Requirements/Cor		tection Lim	te:			1	3	/ /	/ /	/		/	/	/ /	/	Filtration	L
If MS is required in	dicate in Sample Specific Comme	nts which same	oles and what to	ests MS to be	performed	4	3	10	/ /	/	/		/ /	/ /	/ /	/	Done Not needed	
(Note: All CAM met	hods for inorganic analyses require	MS every 20	soil samples)				1 /	. /	5/	/	11	/ /		1	/	/ /	Lab to do Preservation	0
							1/2	2/1	37	/ /	/ /	/	/	/	//	/ /	☐ Lab to do	T
ALPHA Lab ID			Colle	ection	Sample	Sampler's	EX.	//	//	/ /		/	/	//	/ /	/	(Please specify below)	- E
(Lab Use Only)	Sample ID		Date	Time	Matrix	Initials	1		-/-	_	\leftarrow	-	4	-	-	1	Sample Specific Comments	,
-61	62-1/05 (0-21)	4.2.21	1352	5	TL	×	X						4	+	1		+
-42	6-2-1115 0	7-21)	4.2.21	1410	5	TL	X	X										1
_13	FB-040221		4.2.21	1420	5	TL	X											1
-14	EB-040221		4.2.21	1430	5	TL	X											
- 11																		
			-	-		-	+			+	+			\forall				
						-	+	-	-	-	+	-	\vdash	+	-	+		+
									-	_	+	-		-	+	+		+
											-				_	-		+
1																		
					1000	20 (a) (a) (a) (a)	100			-	-	-		-		+		
PLEASE ANSWE	ER QUESTIONS ABOVE!				0.0000	tainer Type	P	P		-	+	-		-		+	Please print clearly, legibly and operation pletely. Samples can not be log	ged
IS YOUR F	PROJECT -	11			1	reservative	Nive	14me		- V. (J.)		-			ate/Ti	me	in and turnaround time clock will start until any ambiguities are re	
	or CT RCP?	Refin	guished By		4.Z.	ite/Time	-		Ryo	eived f	W/L)		412	Di I	ob)	All samples submitted are subje	
IVIA IVICE	46	1 20	Kandle	> _	110	7 1719	M	it	uqu	U/J	200	-		4/2	121	1815	Alpha's Terms and Conditions. See reverse side.	
FORM NO: 01-01 (rev. 18-	4 11	Lychu	JUMBE	4	1/2/2	09:15	100	th	whole		200			4/5	121	09/1		
Page 116 of 116	- 4	11			71	VAVV-25 50			nn			4115		41	-12	10	115	

ANALYTICAL REPORT

Lab Number: L2118991

Client: GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd.

3rd Floor

Glastonbury, CT 06033

ATTN: Richard Desrosiers
Phone: (860) 858-3130

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Report Date: 04/29/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991 **Report Date:** 04/29/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2118991-01	GZ-107(3.8-5.3')	SOIL	CANTON, CT	04/14/21 08:38	04/14/21
L2118991-02	GZ-108(3.5-5')	SOIL	CANTON, CT	04/14/21 08:55	04/14/21
L2118991-03	GZ-110(3.7-5.2')	SOIL	CANTON, CT	04/14/21 09:08	04/14/21
L2118991-04	GZ-109(3.2-4.7')	SOIL	CANTON, CT	04/14/21 09:31	04/14/21
L2118991-05	GZ-111(3-4.3')	SOIL	CANTON, CT	04/14/21 10:00	04/14/21

Project Name: TOWN OF CANTON Lab Number: L2118991
Project Number: 05.0046589.02 Report Date: 04/29/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: TOWN OF CANTON Lab Number: L2118991
Project Number: 05.0046589.02 Report Date: 04/29/21

Case Narrative (continued)

Sample Receipt

L2118991-01 through -05: The sample was received in an inappropriate container for the PFAAs via LCMSMS-Isotope Dilution, Total Organic Carbon-EPA 9060A (2 reps) analysis.

Perfluorinated Alkyl Acids by Isotope Dilution

L2118991-01, -01RE, -02, -03RE, -04RE and -05RE: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details. L2118991-01: The surrogate recoveries were outside the acceptance criteria (less than 10%) for n-deuteriomethylperfluoro-1-octanesulfonamidoacetic acid (d3-nmefosaa) (1%) and n-deuterioethylperfluoro-1-octanesulfonamidoacetic acid (d5-netfosaa) (1%); however, re-extraction at lesser sample weight achieved similar results. The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

L2118991-01RE: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

L2118991-03, -04, and -05RE: The sample was re-extracted with less sample weight within holding time due to several Extracted Internal Standards recovering <10%. The re-extraction resulted in an increase in EIS recoveries therefore the re-extraction is reported.

L2118991-03RE, -04RE, and -05RE: The sample has elevated detection limits due to the dilution required by the sample matrix.

WG1487098-1, WG1487098-2, WG1488287-1, and WG1488287-2: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

SPLP Perfluorinated Alkyl Acids by Isotope Dilution

L2118991-03, -04, and -05: The sample was re-extracted on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-extraction was performed only

Project Name: TOWN OF CANTON Lab Number: L2118991
Project Number: 05.0046589.02 Report Date: 04/29/21

Case Narrative (continued)

for the compound(s) that exceeded the calibration range.

L2118991-03RE, -04RE, and -05RE: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2118991-03 and -04: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1489721-3: This blank represents the SPLP tumbling blank associated with L2118991-01 through -05.

WG1490726-5: This blank represents the SPLP tumbling blank associated with L2118991-03RE, -04RE and -05RE.

WG1490726-1, WG1490726-2, and WG1490726-5: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Alycia Mogayzel

Authorized Signature:

Title: Technical Director/Representative

Date: 04/29/21

ORGANICS

SEMIVOLATILES

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/29/21

Lab ID: L2118991-01

Client ID: GZ-107(3.8-5.3') Sample Location: CANTON, CT

Date Collected: 04/14/21 08:38 Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

134,LCMSMS-ID Analytical Method: Analytical Date: 04/24/21 21:41

Analyst: SG 81% Percent Solids:

TCLP/SPLP Ext. Date: 04/21/21 17:20

Extraction Method: ALPHA 23528

Extraction Date: 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isotope	Dilution & E	PA 1312 - Ma	ansfield Lat)		
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.85		1
Perfluoropentanoic Acid (PFPeA)	3.88		ng/l	1.85		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.85		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.85		1
Perfluorohexanoic Acid (PFHxA)	3.55		ng/l	1.85		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.85		1
Perfluoroheptanoic Acid (PFHpA)	2.93		ng/l	1.85		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.85		1
Perfluorooctanoic Acid (PFOA)	7.88		ng/l	1.85		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85		1
Perfluorononanoic Acid (PFNA)	17.5		ng/l	1.85		1
Perfluorooctanesulfonic Acid (PFOS)	13.4		ng/l	1.85		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.85		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85		1

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/14/21 08:38

Client ID: GZ-107(3.8-5.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	83	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	109	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	87	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	87	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	97	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	97	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	97	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	58	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	103	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	34	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	68	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	102	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	93	22-136

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date: 04/29/21

Lab ID: L2118991-01 Client ID: GZ-107(3.8-5.3')

Sample Location: CANTON, CT Date Collected: 04/14/21 08:38 Date Received: 04/14/21 Field Prep: Not Specified

Lab Number:

Sample Depth:

Analytical Method:

Matrix: Soil

Extraction Method: ALPHA 23528 **Extraction Date:** 04/16/21 11:48 134,LCMSMS-ID

Analytical Date: 04/17/21 15:31

Analyst: MP 81% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.570		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.570		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.285		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.14		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.570		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.14		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.285		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.285		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.285		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.570		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.570		1
Perfluorononanoic Acid (PFNA)	0.450		ng/g	0.285		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.285		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.285		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.570		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.14		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.570		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.570		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.570		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.570		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.570		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.570		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.570		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.570		1

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/14/21 08:38

Client ID: GZ-107(3.8-5.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	30	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	24	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	40	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	31		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	26	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	27	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	46	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	31	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	49		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	31	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	43	Q	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	31	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	64		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	1	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	30	Q	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	71		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	1	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	33	Q	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	17	Q	24-159

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

L2118991

Report Date: 04/29/21

Lab ID: L2118991-01 RE

Client ID: GZ-107(3.8-5.3') Sample Location: CANTON, CT

Date Collected: 04/14/21 08:38 Date Received: 04/14/21

Field Prep:

Lab Number:

Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 02:44

Analyst: MP 81% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/20/21 08:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	2.22		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	2.22		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	1.11		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	4.45		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	2.22		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	4.45		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	1.11		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	1.11		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	1.11		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	2.22		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	2.22		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	1.11		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	1.11		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	1.11		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	2.22		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	4.45		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	2.22		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	2.22		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	2.22		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	2.22		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	2.22		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	2.22		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	2.22		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	2.22		1

Project Name: TOWN OF CANTON Lab Number: L2118991

SAMPLE RESULTS

Lab ID: L2118991-01 RE Date Collected: 04/14/21 08:38

Client ID: GZ-107(3.8-5.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	55	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	45	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	74		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	91		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	47	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	52	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	85		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	57	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	150		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	55	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	79		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	63	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	172		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	1	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	67		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	94		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	4	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	70		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	62		24-159

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

L2118991

Report Date: 04/29/21

Lab Number:

Lab ID: L2118991-02

Client ID: GZ-108(3.5-5') Sample Location: CANTON, CT

Date Collected: 04/14/21 08:55 Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 22:14

Analyst: SG 85% Percent Solids:

TCLP/SPLP Ext. Date: 04/21/21 17:20

Extraction Method: ALPHA 23528 **Extraction Date:** 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isotope	Dilution & E	PA 1312 - M	ansfield Lab)		
Perfluorobutanoic Acid (PFBA)	5.70		ng/l	1.84		1
Perfluoropentanoic Acid (PFPeA)	13.3		ng/l	1.84		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.84		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.84		1
Perfluorohexanoic Acid (PFHxA)	8.54		ng/l	1.84		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.84		1
Perfluoroheptanoic Acid (PFHpA)	14.9		ng/l	1.84		1
Perfluorohexanesulfonic Acid (PFHxS)	11.3		ng/l	1.84		1
Perfluorooctanoic Acid (PFOA)	34.4		ng/l	1.84		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.84		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.84		1
Perfluorononanoic Acid (PFNA)	5.76		ng/l	1.84		1
Perfluorooctanesulfonic Acid (PFOS)	28.9		ng/l	1.84		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.84		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.84		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.84		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.84		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.84		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.84		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.84		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.84		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.84		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.84		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.84		1

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-02 Date Collected: 04/14/21 08:55

Client ID: GZ-108(3.5-5') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	99	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	67	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	80	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	91	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	83	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	90	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	98	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	84	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	96	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	89	22-136

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/29/21

Lab ID: L2118991-02

Client ID: GZ-108(3.5-5') Sample Location: CANTON, CT

Date Collected: 04/14/21 08:55 Date Received: 04/14/21

Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/17/21 15:48

Analyst: MP 85% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/16/21 11:48

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.534		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.534		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.267		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.07		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.534		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.07		1
Perfluoroheptanoic Acid (PFHpA)	0.308		ng/g	0.267		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.267		1
Perfluorooctanoic Acid (PFOA)	0.731		ng/g	0.267		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.534		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.534		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.267		1
Perfluorooctanesulfonic Acid (PFOS)	0.620		ng/g	0.267		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.267		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.534		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.07		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.534		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.534		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.534		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.534		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.534		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.534		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.534		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.534		1

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: Date Collected: 04/14/21 08:55

Client ID: GZ-108(3.5-5') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	92		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	74		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	92		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	91		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	78		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	104		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152		20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	194	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	26	Q	31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	98		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	74		10-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	32	Q	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	100		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	99		24-159	

L2118991

04/14/21 09:08

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/29/21

Lab ID: L2118991-03 Date Collected:

Date Received: 04/14/21 GZ-110(3.7-5.2') Sample Location: Field Prep: CANTON, CT Not Specified

Sample Depth:

Analytical Date:

Client ID:

Extraction Method: ALPHA 23528 Matrix: Soil

Extraction Date: 04/23/21 04:14 Analytical Method: 134,LCMSMS-ID

Analyst: SG 81% Percent Solids:

TCLP/SPLP Ext. Date: 04/21/21 17:20

04/24/21 22:47

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isotope	Dilution & E	PA 1312 - M	ansfield Lat)		
Perfluorobutanoic Acid (PFBA)	33.2		ng/l	1.85		1
Perfluoropentanoic Acid (PFPeA)	173		ng/l	1.85		1
Perfluorobutanesulfonic Acid (PFBS)	33.9		ng/l	1.85		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.85		1
Perfluorohexanoic Acid (PFHxA)	157		ng/l	1.85		1
Perfluoropentanesulfonic Acid (PFPeS)	146		ng/l	1.85		1
Perfluoroheptanoic Acid (PFHpA)	155		ng/l	1.85		1
Perfluorohexanesulfonic Acid (PFHxS)	1330	Е	ng/l	1.85		1
Perfluorooctanoic Acid (PFOA)	238		ng/l	1.85		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	226		ng/l	1.85		1
Perfluoroheptanesulfonic Acid (PFHpS)	213		ng/l	1.85		1
Perfluorononanoic Acid (PFNA)	341		ng/l	1.85		1
Perfluorooctanesulfonic Acid (PFOS)	5280	E	ng/l	1.85		1
Perfluorodecanoic Acid (PFDA)	43.5		ng/l	1.85		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	21.9		ng/l	1.85		1
Perfluorononanesulfonic Acid (PFNS)	2.68		ng/l	1.85		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85		1
Perfluoroundecanoic Acid (PFUnA)	7.71		ng/l	1.85		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85		1
Perfluorooctanesulfonamide (FOSA)	8.60	F	ng/l	1.85		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85		1

Project Name: TOWN OF CANTON Lab Number: L2118991

SAMPLE RESULTS

Lab ID: L2118991-03 Date Collected: 04/14/21 09:08

Client ID: GZ-110(3.7-5.2') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	82		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	102		62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	177	Q	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	128		12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	88		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115		71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86		62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	173	Q	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	87		69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81		62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	142		10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	64		24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	84		55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	39		10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	58		27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	86		48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		22-136

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-03 RE Date Collected: 04/14/21 09:08

Client ID: GZ-110(3.7-5.2') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/26/21 11:15

Analyst: RS Percent Solids: 81%

TCLP/SPLP Ext. Date: 04/21/21 17:20

04/27/21 19:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isoto	ope Dilution & EP	PA 1312 - Ma	ansfield Lab			
Perfluorohexanesulfonic Acid (PFHxS)	2020		ng/l	40.0		1
Perfluorooctanesulfonic Acid (PFOS)	3930		ng/l	40.0		1

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	122		71-134	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		69-131	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2118991

Report Date: 04/29/21

Lab ID: L2118991-03 RE

Client ID: GZ-110(3.7-5.2') Sample Location: CANTON, CT

Date Collected: 04/14/21 09:08 Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 03:00

Analyst: MP 81% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/20/21 08:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	2.17		1
Perfluoropentanoic Acid (PFPeA)	4.88		ng/g	2.17		1
Perfluorobutanesulfonic Acid (PFBS)	1.23		ng/g	1.08		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	4.34		1
Perfluorohexanoic Acid (PFHxA)	4.44		ng/g	2.17		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	4.34		1
Perfluoroheptanoic Acid (PFHpA)	4.46		ng/g	1.08		1
Perfluorohexanesulfonic Acid (PFHxS)	58.0		ng/g	1.08		1
Perfluorooctanoic Acid (PFOA)	7.68		ng/g	1.08		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	7.61		ng/g	2.17		1
Perfluoroheptanesulfonic Acid (PFHpS)	3.92		ng/g	2.17		1
Perfluorononanoic Acid (PFNA)	15.7		ng/g	1.08		1
Perfluorooctanesulfonic Acid (PFOS)	266		ng/g	1.08		1
Perfluorodecanoic Acid (PFDA)	5.04		ng/g	1.08		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	2.17		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	4.34		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	2.17		1
Perfluoroundecanoic Acid (PFUnA)	3.16		ng/g	2.17		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	2.17		1
Perfluorooctanesulfonamide (FOSA)	2.31	F	ng/g	2.17		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	2.17		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	2.17		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	2.17		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	2.17		1

Project Name: TOWN OF CANTON Lab Number: L2118991

SAMPLE RESULTS

Lab ID: L2118991-03 RE Date Collected: 04/14/21 09:08

Client ID: GZ-110(3.7-5.2') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	64		58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	128		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	75		66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	81		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	119		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	207	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86		72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	248	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	6	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	99		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	10		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	10	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		24-159

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Report Date: 04/29/21

Lab Number:

Lab ID: L2118991-04

Client ID: GZ-109(3.2-4.7') Sample Location: CANTON, CT

Date Collected: 04/14/21 09:31 Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 23:04

Analyst: SG 81% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
SPLP Perfluorinated Alkyl Acids by Isotope	Dilution & E	PA 1312 - M	ansfield Lal	b			
Perfluorobutanoic Acid (PFBA)	14.9		ng/l	1.82		1	
Perfluoropentanoic Acid (PFPeA)	32.9		ng/l	1.82		1	
Perfluorobutanesulfonic Acid (PFBS)	3.76		ng/l	1.82		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.82		1	
Perfluorohexanoic Acid (PFHxA)	55.9		ng/l	1.82		1	
Perfluoropentanesulfonic Acid (PFPeS)	24.9		ng/l	1.82		1	
Perfluoroheptanoic Acid (PFHpA)	29.2		ng/l	1.82		1	
Perfluorohexanesulfonic Acid (PFHxS)	496	E	ng/l	1.82		1	
Perfluorooctanoic Acid (PFOA)	56.3		ng/l	1.82		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	61.3		ng/l	1.82		1	
Perfluoroheptanesulfonic Acid (PFHpS)	54.1		ng/l	1.82		1	
Perfluorononanoic Acid (PFNA)	236		ng/l	1.82		1	
Perfluorooctanesulfonic Acid (PFOS)	9500	E	ng/l	1.82		1	
Perfluorodecanoic Acid (PFDA)	50.3		ng/l	1.82		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	11.4		ng/l	1.82		1	
Perfluorononanesulfonic Acid (PFNS)	5.48		ng/l	1.82		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.82		1	
Perfluoroundecanoic Acid (PFUnA)	5.16		ng/l	1.82		1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.82		1	
Perfluorooctanesulfonamide (FOSA)	13.4	F	ng/l	1.82		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.82		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.82		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.82		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.82		1	

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-04 Date Collected: 04/14/21 09:31

Client ID: GZ-109(3.2-4.7') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	76		58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101		62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	274	Q	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	182	Q	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80		57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	87		60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	236	Q	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89		62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	241	Q	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	72		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	97		69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	86		62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	225	Q	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	67		24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21		10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	60		27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	97		48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	91		22-136

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/29/21

Lab ID: L2118991-04 RE

Client ID: GZ-109(3.2-4.7') Sample Location: CANTON, CT

Date Collected: 04/14/21 09:31 Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 03:17

Analyst: MP 81% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/20/21 08:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	2.20		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	2.20		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	1.10		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	4.40		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	2.20		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	4.40		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	1.10		1
Perfluorohexanesulfonic Acid (PFHxS)	14.3		ng/g	1.10		1
Perfluorooctanoic Acid (PFOA)	1.77		ng/g	1.10		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	2.20		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	2.20		1
Perfluorononanoic Acid (PFNA)	8.23		ng/g	1.10		1
Perfluorooctanesulfonic Acid (PFOS)	327		ng/g	1.10		1
Perfluorodecanoic Acid (PFDA)	2.78		ng/g	1.10		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	2.20		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	4.40		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	2.20		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	2.20		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	2.20		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	2.20		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	2.20		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	2.20		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	2.20		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	2.20		1

Project Name: TOWN OF CANTON Lab Number: L2118991

SAMPLE RESULTS

Lab ID: L2118991-04 RE Date Collected: 04/14/21 09:31

Client ID: GZ-109(3.2-4.7') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	49	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	41	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	69		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	45	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	50	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	53	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	115		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	52	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	92		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	57	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	133		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	0	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	60	Q	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	56		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	2	Q	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	55		24-159

Project Name: Lab Number: TOWN OF CANTON L2118991

Project Number: Report Date: 05.0046589.02 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-04 RE Date Collected: 04/14/21 09:31

Date Received: Client ID: GZ-109(3.2-4.7') 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: ALPHA 23528 Matrix: Soil

Extraction Date: 04/26/21 11:15 Analytical Method: 134,LCMSMS-ID Analytical Date:

Analyst: RS 81% Percent Solids:

04/28/21 15:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab										
Perfluorohexanesulfonic Acid (PFHxS)	470		ng/l	40.0		1				
Perfluorooctanesulfonic Acid (PFOS)	7660		ng/l	40.0		1				

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	116		71-134
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96		59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	104		69-131

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number:

Report Date: 04/29/21

Lab ID: L2118991-05 Client ID:

GZ-111(3-4.3') Sample Location: CANTON, CT

Date Collected: 04/14/21 10:00 Date Received: 04/14/21 Field Prep:

Not Specified

L2118991

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 23:20

Analyst: SG 75% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Isotope	Dilution & E	PA 1312 - Ma	ansfield Lab)		
Perfluorobutanoic Acid (PFBA)	8.78		ng/l	1.86		1
Perfluoropentanoic Acid (PFPeA)	17.7		ng/l	1.86		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	1.86		1
Perfluorohexanoic Acid (PFHxA)	9.73		ng/l	1.86		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.86		1
Perfluoroheptanoic Acid (PFHpA)	12.0		ng/l	1.86		1
Perfluorohexanesulfonic Acid (PFHxS)	37.7		ng/l	1.86		1
Perfluorooctanoic Acid (PFOA)	38.9		ng/l	1.86		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.48	F	ng/l	1.86		1
Perfluoroheptanesulfonic Acid (PFHpS)	6.86		ng/l	1.86		1
Perfluorononanoic Acid (PFNA)	412	E	ng/l	1.86		1
Perfluorooctanesulfonic Acid (PFOS)	196		ng/l	1.86		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.86		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.86		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86		1

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-05 Date Collected: 04/14/21 10:00

Client ID: GZ-111(3-4.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab

% Recovery	Acceptance Qualifier Criteria
74	58-132
97	62-163
110	70-131
77	12-142
80	57-129
86	60-129
99	71-134
86	62-129
89	14-147
73	59-139
91	69-131
85	62-124
83	10-162
51	24-116
96	55-137
25	10-112
62	27-126
91	48-131
84	22-136
	74 97 110 77 80 86 99 86 89 73 91 85 83 51 96 25 62 91

Project Name: TOWN OF CANTON Lab Number: L2118991

SAMPLE RESULTS

Lab ID: L2118991-05 RE Date Collected: 04/14/21 10:00

Client ID: GZ-111(3-4.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: ALPHA 23528

Analytical Method: 134,LCMSMS-ID Extraction Date: 04/26/21 11:15
Analytical Date: 04/27/21 20:20

Analyst: RS Percent Solids: 75%

TCLP/SPLP Ext. Date: 04/21/21 17:20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
SPLP Perfluorinated Alkyl Acids by Iso	tope Dilution & EF	PA 1312 - M	ansfield Lab			
Perfluorononanoic Acid (PFNA)	368		ng/l	20.0		1
Surrogate (Extracted Internal Standard)	1		% Recovery	Qualifier		eptance riteria
Perfluoro[13C9]Nonanoic Acid (M9PFNA)			95		,	59-139

04/14/21 10:00

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

SAMPLE RESULTS

Lab Number: L2118991

Date Collected:

Report Date: 04/29/21

Lab ID: L2118991-05 RE

Client ID: GZ-111(3-4.3') Sample Location: CANTON, CT

Date Received: 04/14/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 03:33

Analyst: MP 75% Percent Solids:

Extraction Method: ALPHA 23528 **Extraction Date:** 04/20/21 08:58

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	ND		ng/g	2.39		1				
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	2.39		1				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	1.19		1				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	4.78		1				
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	2.39		1				
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	4.78		1				
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	1.19		1				
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	1.19		1				
Perfluorooctanoic Acid (PFOA)	1.46		ng/g	1.19		1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	2.39		1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	2.39		1				
Perfluorononanoic Acid (PFNA)	14.2		ng/g	1.19		1				
Perfluorooctanesulfonic Acid (PFOS)	6.68		ng/g	1.19		1				
Perfluorodecanoic Acid (PFDA)	ND		ng/g	1.19		1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	2.39		1				
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	4.78		1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	2.39		1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	2.39		1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	2.39		1				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	2.39		1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	2.39		1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	2.39		1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	2.39		1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	2.39		1				

Project Name: TOWN OF CANTON Lab Number: L2118991

Project Number: 05.0046589.02 **Report Date:** 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-05 RE Date Collected: 04/14/21 10:00

Client ID: GZ-111(3-4.3') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	20	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	16	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	34	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	29		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	18	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	20	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	38	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	21	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	51		20-154
erfluoro[13C9]Nonanoic Acid (M9PFNA)	22	Q	72-140
erfluoro[13C8]Octanesulfonic Acid (M8PFOS)	39	Q	79-136
erfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	23	Q	75-130
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	56		19-175
I-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	0	Q	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	24	Q	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	90		10-117
-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	1	Q	34-137
erfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	27	Q	54-150
erfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	23	Q	24-159

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/17/21 13:52

Analyst:

04/17/21 13: MP Extraction Method: ALPHA 23528

Extraction Date: 04/16/21 11:48

arameter	Result	Qualifier Units	RL	MDL	
erfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield Lab for	sample(s):	01-02 Batch:	WG1487098-1
Perfluorobutanoic Acid (PFBA)	ND	ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND	ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND	ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND	ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND	ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND	ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND	ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND	ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND	ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND	ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND	ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND	ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND	ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND	ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND	ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND	ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND	ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND	ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND	ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND	ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND	ng/g	0.500		

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 134,LCMSMS-ID 04/17/21 13:52

Analyst:

MP

Extraction Method: ALPHA 23528

Extraction Date:

04/16/21 11:48

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01-02 Batch: WG1487098-1

Surrogate (Extracted Internal Standard)	%Recovery		Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	97		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	78		58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	94		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	81		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	83		66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	86		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	145		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97		72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	188	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	83		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	62		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	103		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	101		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	100		24-159

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 02:11

Analyst: MP

Extraction Method: ALPHA 23528 Extraction Date: 04/20/21 08:58

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope WG1488287-1	Dilution -	Mansfield	Lab for	sample(s):	01,03-05 Batch:	
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500		

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/23/21 02:11

Analyst: MP

Extraction Method: ALPHA 23528

Extraction Date: 04/20/21 08:58

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab for sample(s): 01,03-05 Batch WG1488287-1

Surrogate (Extracted Internal Standard)	%Recovery		Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	111		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	88		58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106		74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	165		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	93		66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	100		71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118		78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	110		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	255	Q	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	105		72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120		79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	112		75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	279	Q	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	98		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	117		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29		10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	105		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	119		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	108		24-159

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 20:51

Analyst: SG

TCLP/SPLP Extraction Date:

Extraction Method: ALPHA 23528
Extraction Date: 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	
SPLP Perfluorinated Alkyl Acids by I Batch: WG1489721-1	sotope Dilu	ition & EP	A 1312 - N	Mansfield Lab fo	or sample(s):	01-05
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		

L2118991

Project Name: TOWN OF CANTON

Project Number: Report Date: 05.0046589.02

04/29/21

Acceptance

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Extraction Method: ALPHA 23528 Analytical Date: 04/24/21 20:51 04/23/21 04:14 **Extraction Date:**

Analyst: SG TCLP/SPLP Extraction Date:

> Result Qualifier Units RL MDL **Parameter**

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 01-05

Batch: WG1489721-1

		,	ACCEPIANCE	
Surrogate (Extracted Internal Standard)	%Recovery		Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	98		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	127		62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106		70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	87		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	97		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	99		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	100		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	99		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	75		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	103		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	65		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	79		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	104		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	95		22-136	

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 21:08

Analyst: SG

TCLP/SPLP Extraction Date: 04/21/21 17:20

Extraction Method: ALPHA 23528
Extraction Date: 04/23/21 04:14

Parameter	Result	Qualifier	Units	RL	MDL	
SPLP Perfluorinated Alkyl Acids by I Batch: WG1489721-3	sotope Dilu	ition & EPA	A 1312 - N	Mansfield Lab fo	or sample(s):	01-05
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.85		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.85		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.85		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/l	1.85		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.85		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.85		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.85		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.85		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.85		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.85		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.85		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	1.85		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.85		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	1.85		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85		

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/24/21 21:08

Analyst: SG

TCLP/SPLP Extraction Date: 04/21/21 17:20

Extraction Method: ALPHA 23528

Extraction Date: 04/23/21 04:14

Parameter Result Qualifier Units RL MDL

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 01-05

Batch: WG1489721-3

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	83	58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	111	62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108	70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	82	12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	86	57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	93	60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	117	71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95	62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	97	14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95	59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	99	69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	89	62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	92	10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	69	24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101	55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	29	10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72	27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	97	48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	98	22-136

Project Number: 05.0046589.02 Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/27/21 18:41

Analyst: TCLP/SPLP Extraction Date:

RS

Extraction Method:	ALPHA 23528
Extraction Date:	04/26/21 11:15

Parameter	Result	Qualifier	Units	RL	MDL	
SPLP Perfluorinated Alkyl Acids by I Batch: WG1490726-1	sotope Dilu	ition & EP/	\ 1312 - N	Mansfield Lab fo	or sample(s):	03-05
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	2.00		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	2.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/27/21 18:41

Analyst: RS TCLP/SPLP Extraction Date:

Extraction Method: ALPHA 23528

Acceptance

Extraction Date: 04/26/21 11:15

Parameter Result Qualifier Units RL MDL

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 03-05

Batch: WG1490726-1

Surrogate (Extracted Internal Standard)	%Recovery		Criteria	
				-
Perfluoro[13C4]Butanoic Acid (MPFBA)	106		58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	181	Q	62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	153	Q	70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	102		12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	119		57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	113		60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	132		71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106		62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	101		14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95		59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	99		62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	107		10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	56		24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	105		55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	49		10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	62		27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	98		48-131	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	86		22-136	

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/27/21 18:57

Analyst: RS

TCLP/SPLP Extraction Date: 04/21/21 17:20

Extraction Method: ALPHA 23528
Extraction Date: 04/26/21 11:15

Parameter	Result	Qualifier	Units	RL	MDL	
SPLP Perfluorinated Alkyl Acids by I Batch: WG1490726-5	sotope Dilu	ition & EPA	A 1312 - N	Mansfield Lab fo	or sample(s):	03-05
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.74		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.74		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.74		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	d ND		ng/l	1.74		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.74		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	1.74		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.74		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.74		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.74		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.74		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.74		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.74		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.74		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.74		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/l	1.74		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/l	1.74		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/l	1.74		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.74		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.74		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.74		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.74		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.74		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.74		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.74		

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Analytical Method: 134,LCMSMS-ID Analytical Date: 04/27/21 18:57

Analyst: RS

TCLP/SPLP Extraction Date: 04/21/21 17:20

Extraction Method: ALPHA 23528 Extraction Date: 04/26/21 11:15

Acceptance

Parameter Result Qualifier Units RL MDL

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab for sample(s): 03-05

Batch: WG1490726-5

		Acceptance			
Surrogate (Extracted Internal Standard)	%Recovery		Criteria		
Perfluoro[13C4]Butanoic Acid (MPFBA)	79		58-132		
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	124		62-163		
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	148	Q	70-131		
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	89		12-142		
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92		57-129		
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	92		60-129		
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	126		71-134		
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92		62-129		
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	98		14-147		
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89		59-139		
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	110		69-131		
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	96		62-124		
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	106		10-162		
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	49		24-116		
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109		55-137		
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	16		10-112		
I-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	48		27-126		
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95		48-131		
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	84		22-136		

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfield Lab	Associated sample(s):	01-02 Batch	WG1487098-2			
Perfluorobutanoic Acid (PFBA)	104	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	105	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	116	-		72-128	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	128	-		62-145	-		30
Perfluorohexanoic Acid (PFHxA)	109	-		70-132	-		30
Perfluoropentanesulfonic Acid (PFPeS)	97	-		73-123	-		30
Perfluoroheptanoic Acid (PFHpA)	110	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	103	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	111	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	115	-		64-140	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	109	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	113	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	109	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	111	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	114	-		65-137	-		30
Perfluorononanesulfonic Acid (PFNS)	110	-		69-125	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	111	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	126	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	119	-		59-134	-		30
Perfluorooctanesulfonamide (FOSA)	106	-		67-137	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	109	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	95	-		69-135	-		30

04/29/21

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number: L2118991

Report Date:

<u>Pa</u>	rameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Pe	rfluorinated Alkyl Acids by Isotope Dilution -	Mansfield Lab	Associated s	sample(s):	01-02	Batch:	WG1487098-2				
	Perfluorotridecanoic Acid (PFTrDA)	120		-			66-139	-		30	
	Perfluorotetradecanoic Acid (PFTA)	115		-			69-133	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	77				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	93				74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	85				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	87				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	87				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103				78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97				72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101				79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	96				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	181	Q			19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	84				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	91				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	72				10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	87				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	106				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	119				24-159

Lab Control Sample Analysis Batch Quality Control

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date: 04/29/21

ameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
fluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sample(s):	01,03-05 Batch	: WG1488287-2			
Perfluorobutanoic Acid (PFBA)	107	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	106	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	112	-		72-128	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	118	-		62-145	-		30
Perfluorohexanoic Acid (PFHxA)	108	-		70-132	-		30
Perfluoropentanesulfonic Acid (PFPeS)	95	-		73-123	-		30
Perfluoroheptanoic Acid (PFHpA)	106	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	98	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	108	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	119	-		64-140	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	102	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	117	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	108	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	119	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	125	-		65-137	-		30
Perfluorononanesulfonic Acid (PFNS)	95	-		69-125	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	114	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	114	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	113	-		59-134	-		30
Perfluorooctanesulfonamide (FOSA)	106	-		67-137	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	97	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	102	-		69-135	-		30

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s): 01,03-	05 Batch:	WG1488287-2				
Perfluorotridecanoic Acid (PFTrDA)	109		-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	112		-		69-133	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	112				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	89				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	103				74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	162				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	102				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	119				78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	109				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	238	Q			20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	105				72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	117				79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	108				75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	258	Q			19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	108				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	119				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	32				10-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	109				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	125				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	105				24-159

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

rameter	LCS %Recovery	LCSD Qual %Recover	%Recov Y Qual Limits	•	RPD Qual Limits	
LP Perfluorinated Alkyl Acids by Isotop	e Dilution & EPA 13	12 - Mansfield Lab Assoc	iated sample(s): 01-05	Batch: WG14897	21-2	
Perfluorobutanoic Acid (PFBA)	113	-	67-148		30	
Perfluoropentanoic Acid (PFPeA)	112	-	63-161	-	30	
Perfluorobutanesulfonic Acid (PFBS)	115	-	65-157	-	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	121	-	37-219	-	30	
Perfluorohexanoic Acid (PFHxA)	114	-	69-168	-	30	
Perfluoropentanesulfonic Acid (PFPeS)	121	-	52-156	-	30	
Perfluoroheptanoic Acid (PFHpA)	113	-	58-159	-	30	
Perfluorohexanesulfonic Acid (PFHxS)	128	-	69-177	-	30	
Perfluorooctanoic Acid (PFOA)	115	-	63-159	-	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	126	-	49-187	-	30	
Perfluoroheptanesulfonic Acid (PFHpS)	109	-	61-179	-	30	
Perfluorononanoic Acid (PFNA)	115	-	68-171	-	30	
Perfluorooctanesulfonic Acid (PFOS)	111	-	52-151	-	30	
Perfluorodecanoic Acid (PFDA)	116	-	63-171	-	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	123	-	56-173	-	30	
Perfluorononanesulfonic Acid (PFNS)	115	-	48-150	-	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	109	-	60-166	-	30	
Perfluoroundecanoic Acid (PFUnA)	114	-	60-153	-	30	
Perfluorodecanesulfonic Acid (PFDS)	114	-	38-156	-	30	
Perfluorooctanesulfonamide (FOSA)	109	-	46-170	-	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	113	-	45-170	-	30	
Perfluorododecanoic Acid (PFDoA)	116	-	67-153	-	30	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acids by Isotope D	ilution & EPA 13	12 - Mansfield L	_ab Associated	sample(s):	01-05 Batch:	WG1489721-2		
Perfluorotridecanoic Acid (PFTrDA)	131		-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	110		-		59-182	-		30

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	125				62-163
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	107				70-131
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	93				12-142
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	97				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	99				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100				71-134
Perfluoro[13C8]Octanoic Acid (M8PFOA)	96				62-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	103				14-147
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	95				59-139
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101				69-131
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93				62-124
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	107				10-162
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	88				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	106				55-137
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	65				10-112
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	85				27-126
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	96				22-136

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recov ' Qual Limits	•	RPD Qual Limits	
LP Perfluorinated Alkyl Acids by Isotop	e Dilution & EPA 13	12 - Mansfield Lab Associa	ated sample(s): 03-05	Batch: WG14907	26-2	
Perfluorobutanoic Acid (PFBA)	120	-	67-148	-	30	
Perfluoropentanoic Acid (PFPeA)	118	-	63-161	-	30	
Perfluorobutanesulfonic Acid (PFBS)	125	-	65-157	-	30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	130	-	37-219	-	30	
Perfluorohexanoic Acid (PFHxA)	122	-	69-168	-	30	
Perfluoropentanesulfonic Acid (PFPeS)	133	-	52-156	-	30	
Perfluoroheptanoic Acid (PFHpA)	121	-	58-159	-	30	
Perfluorohexanesulfonic Acid (PFHxS)	136	-	69-177	-	30	
Perfluorooctanoic Acid (PFOA)	121	-	63-159	-	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	122	-	49-187	-	30	
Perfluoroheptanesulfonic Acid (PFHpS)	124	-	61-179	-	30	
Perfluorononanoic Acid (PFNA)	120	-	68-171	-	30	
Perfluorooctanesulfonic Acid (PFOS)	120	-	52-151	-	30	
Perfluorodecanoic Acid (PFDA)	118	-	63-171	-	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	156	-	56-173	-	30	
Perfluorononanesulfonic Acid (PFNS)	114	-	48-150	-	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	127	-	60-166	-	30	
Perfluoroundecanoic Acid (PFUnA)	120	-	60-153	-	30	
Perfluorodecanesulfonic Acid (PFDS)	109	-	38-156	-	30	
Perfluorooctanesulfonamide (FOSA)	125	-	46-170	-	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	144	-	45-170	-	30	
Perfluorododecanoic Acid (PFDoA)	126	-	67-153	-	30	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991

Report Date:

04/29/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acids by Isotope D	ilution & EPA 1312	2 - Mansfield I	Lab Associated	sample(s):	03-05 Batch:	WG1490726-2		
Perfluorotridecanoic Acid (PFTrDA)	126		-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	120		-		59-182	-		30

Perfluoro[13C4]Butanoic Acid (MPFBA)		LCS		LCSD		Acceptance
Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 174 Q 62-163 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 146 Q 70-131 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 98 12-142 Perfluoro[1,2,3,4-13C3]Hexanoic Acid (M5PFHxA) 120 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 110 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 125 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 99 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 45 10-112 N-Deuteriorethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126	Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	Perfluoro[13C4]Butanoic Acid (MPFBA)	103				58-132
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 98 12-142 Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 120 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 110 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 125 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C8]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	174	Q			62-163
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 120 57-129 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 110 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 125 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C8]Octanesulfonic Acid (M8PFNA) 96 59-139 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	146	Q			70-131
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 110 60-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 125 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	98				12-142
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 125 71-134 Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	120				57-129
Perfluoro[13C8]Octanoic Acid (M8PFOA) 104 62-129 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	110				60-129
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 95 14-147 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	125				71-134
Perfluoro[13C9]Nonanoic Acid (M9PFNA) 96 59-139 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[13C8]Octanoic Acid (M8PFOA)	104				62-129
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 105 69-131 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	95				14-147
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 97 62-124 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[13C9]Nonanoic Acid (M9PFNA)	96				59-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 89 10-162 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105				69-131
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 68 24-116 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 104 55-137 Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	97				62-124
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)10455-137Perfluoro[13C8]Octanesulfonamide (M8FOSA)4510-112N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)5427-126Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)9848-131	1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	89				10-162
Perfluoro[13C8]Octanesulfonamide (M8FOSA) 45 10-112 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	68				24-116
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 54 27-126 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	104				55-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 98 48-131	Perfluoro[13C8]Octanesulfonamide (M8FOSA)	45				10-112
	N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	54				27-126
Parthuorol1 2-13C2ITetradecanoic Acid (M2PETEDA)	Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	98				48-131
1 6 HINDO 0 1, 2 - 100 2 1 6 HINDO 1 H	Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	85				22-136

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date:

04/29/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is Sample	otope Dilution	- Mansfield	Lab Associ	ated sample(s):	01-02	QC Batch	ID: WG148709	8-3	QC Sample:	L211893	39-01	Client ID:	MS
Perfluorobutanoic Acid (PFBA)	ND	4.96	5.27	106		-	-		71-135	-		30	
Perfluoropentanoic Acid (PFPeA)	ND	4.96	5.22	105		-	-		69-132	-		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	4.4	5.12	116		-	-		72-128	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	4.64	5.97	129		-	-		62-145	-		30	
Perfluorohexanoic Acid (PFHxA)	ND	4.96	5.51	111		-	-		70-132	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	4.66	4.42	95		-	-		73-123	-		30	
Perfluoroheptanoic Acid (PFHpA)	ND	4.96	5.35	108		-	-		71-131	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	4.53	4.72	104		-	-		67-130	-		30	
Perfluorooctanoic Acid (PFOA)	ND	4.96	5.41	107		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	4.72	5.34	113		-	-		64-140	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	4.72	5.06	107		-	-		70-132	-		30	
Perfluorononanoic Acid (PFNA)	ND	4.96	5.53	112		-	-		72-129	-		30	
Perfluorooctanesulfonic Acid (PFOS)	0.514F	4.6	5.53	109		-	-		68-136	-		30	
Perfluorodecanoic Acid (PFDA)	ND	4.96	5.72	115		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	4.76	5.63	118		-	-		65-137	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	4.77	5.17	108		-	-		69-125	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	4.96	5.72	115		-	-		63-144	-		30	
Perfluoroundecanoic Acid (PFUnA)	ND	4.96	6.19	125		-	-		64-136	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	4.78	5.53	116		-	-		59-134	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	4.96	5.30	107		-	-		67-137	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	4.96	5.06	102		-	-		61-139	-		30	
Perfluorododecanoic Acid (PFDoA)	ND	4.96	5.15	104		-	-		69-135	•		30	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	otope Dilution	n - Mansfield	Lab Associa	ated sample(s)	: 01-02	QC Batch	ID: WG1487098	3-3	QC Sample:	L211893	39-01	Client ID: MS
Perfluorotridecanoic Acid (PFTrDA)	ND	4.96	5.48	111		-	-		66-139	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	4.96	5.81	117		-	-		69-133	-		30

	MS	5	M	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	164				19-175
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	83				14-167
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	148				20-154
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	63				34-137
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	55				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	90				61-155
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	89				75-130
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	74				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	78				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95				78-139
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	102				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	94				24-159
Perfluoro[13C4]Butanoic Acid (MPFBA)	89				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	71				58-150
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	92				10-117
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95				79-136
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88				75-130
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86				72-140
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86				74-139

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD (Qual	RPD Limits
Perfluorinated Alkyl Acids by MS Sample	Isotope Dilution	n - Mansfield	Lab Associa	ated sample(s):	: 01,03-05	QC Bate	ch ID: WG14882	287-3	QC Samp	le: L2119	219-01	Client ID:
Perfluorooctanoic Acid (PFOA)	ND	5.19	5.60	105		-	-		69-133	-		30
Perfluorononanoic Acid (PFNA)	ND	5.19	5.48	106		-	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	0.584	4.82	5.16	95		-	-		68-136	-		30

	MS	MSD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery Qualifier	% Recovery Qualifier	Criteria	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	122		79-136	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	107		75-130	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	112		72-140	

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date:

04/29/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acid 01 Client ID: GZ-107(3.8-5.3		Dilution & E	PA 1312 - Ma	ansfield Lab A	ssociated s	sample(s):	01-05 QC B	atch ID:	WG148972	1-4 (QC Sam _l	ole: L2118991-
Perfluorobutanoic Acid (PFBA)	ND	37.2	43.6	113		-	-		67-148	-		30
Perfluoropentanoic Acid (PFPeA)	3.88	37.2	45.5	112		-	-		63-161	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	33.1	38.5	115		-	-		65-157	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	34.8	44.5	128		-	-		37-219	-		30
Perfluorohexanoic Acid (PFHxA)	3.55	37.2	47.0	117		-	-		69-168	-		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	35	39.1	112		-	-		52-156	-		30
Perfluoroheptanoic Acid (PFHpA)	2.93	37.2	44.4	111		-	-		58-159	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	34	42.0	119		-	-		69-177	-		30
Perfluorooctanoic Acid (PFOA)	7.88	37.2	50.4	114		-	-		63-159	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	35.4	44.2	125		-	-		49-187	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	35.4	41.7	118		-	-		61-179	-		30
Perfluorononanoic Acid (PFNA)	17.5	37.2	59.1	112		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	13.4	34.6	51.4	110		-	-		52-151	-		30
Perfluorodecanoic Acid (PFDA)	ND	37.2	41.0	109		-	-		63-171	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	35.7	39.2	110		-	-		56-173	-		30
Perfluorononanesulfonic Acid (PFNS)	ND	35.8	39.2	109		-	-		48-150	-		30
N-Methyl Perfluorooctanesulfonamidoacetic	ND	37.2	48.7	131		-	-		60-166	-		30
Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA)	ND	37.2	43.8	117		-	-		60-153	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	35.9	40.3	112		-	-		38-156	-		30
Perfluorooctanesulfonamide (FOSA)	ND	37.2	43.4F	117		-	-		46-170	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic	ND	37.2	45.2	121		-	-		45-170	-		30
Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA)	ND	37.2	42.4	114		-	-		67-153	-		30

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date:

04/29/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acids 01 Client ID: GZ-107(3.8-5.3'	•	Dilution & EP.	A 1312 - Ma	ansfield Lab As	ssociated	sample(s):	01-05 QC	Batch ID	: WG148972	1-4 (QC Samp	ole: L2118991-
Perfluorotridecanoic Acid (PFTrDA)	ND	37.2	45.3	122		-	-		48-158	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	37.2	42.6	114		-	-		59-182	-		30

	MS	5	M	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	98				10-162
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	81				12-142
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	95				14-147
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	69				27-126
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	64				24-116
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	101				55-137
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	92				62-124
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85				57-129
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	90				60-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	105				71-134
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	100				48-131
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	94				22-136
Perfluoro[13C4]Butanoic Acid (MPFBA)	79				58-132
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104				62-163
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21				10-112
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98				69-131
Perfluoro[13C8]Octanoic Acid (M8PFOA)	90				62-129
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90				59-139
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	105				70-131

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MS %Reco	_	Recovery Ial Limits	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acid: 04 Client ID: GZ-109(3.2-4.7	•	Dilution & EPA	\ 1312 - Mai	nsfield Lab A	ssociated s	sample(s):	03-05	QC Batch	ID: WG149072	6-3	QC Samp	le: L2118991-
Perfluorohexanesulfonic Acid (PFHxS)	470	731	1260	108		-	-		69-177	-		30
Perfluorononanoic Acid (PFNA)	228	800	1090	108		-	-		68-171	-		30
Perfluorooctanesulfonic Acid (PFOS)	7660	742	7730	9	Q	-	-		52-151	-		30

	MS	MSD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery Qualifier	% Recovery Qualifier	Criteria
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	111		71-134
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108		69-131
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	97		59-139

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number: L2118991 **Report Date:** 04/29/21

Parameter	Native Sample	Duplicate Sam	ole Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution D: DUP Sample	- Mansfield Lab Associated s	ample(s): 01-02 Q	C Batch ID: WG148	7098-4	QC Sample:	L2118939-02 Clie	ent
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/g	NC		30	
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/g	NC		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/g	NC		30	
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/g	NC		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC		30	
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/g	NC		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/g	NC		30	
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/g	NC		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC		30	
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC		30	
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/g	NC		30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC		30	
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC		30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/g	NC		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC		30	
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/g	NC		30	

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

th Quality Control Lab Number: L2118991

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - Mar ID: DUP Sample	nsfield Lab Associated s	ample(s): 01-02 QC B	atch ID: WG148	7098-4 Q	C Sample: L2118939-02 Cli
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/g	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/g	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/g	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/g	NC	30

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	%Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	90		92		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	71		74		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	87		89		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	83		87		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	72		77		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	76		81		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	99		102		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		87		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152		156	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	86		88		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95		97		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87		93		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	176	Q	177	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	50		50		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93		101		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	15		26		10-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	61		64		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95		108		54-150	

Lab Number:

L2118991 04/29/21

Report Date:

RPD

Parameter Native Sample Duplicate Sample Units RPD Qual Limits

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1487098-4 QC Sample: L2118939-02 Client

ID: DUP Sample

Project Name:

Project Number:

TOWN OF CANTON

05.0046589.02

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Quality	fier %Recovery Qu	alifier Criteria	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	98	104	24-159	

Lab Number:

L2118991

Report Date:

04/29/21

Project Name: TOWN OF CANTON **Project Number:** 05.0046589.02

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution Client ID: DUP Sample	- Mansfield Lab Associated san	nple(s): 01,03-05	QC Batch ID: \	NG1488287-4	QC Sample: L2119219-02	2
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/g	NC	30	
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC	30	
Perfluorooctanesulfonic Acid (PFOS)	1.17	1.15	ng/g	2	30	

Surrogate (Extracted Internal Standard)	%Recovery Qualifier	%Recovery Qualifier	Acceptance Criteria
Perfluoro[13C8]Octanoic Acid (M8PFOA)	105	111	75-130
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	115	119	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	123	114	79-136

Project Name: TOWN OF CANTON
Project Number: 05.0046589.02

Lab Number: L2118991

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD imits
SPLP Perfluorinated Alkyl Acids by Isotope Dilutio L2118991-02 Client ID: GZ-108(3.5-5')	n & EPA 1312 - Mansfield l	_ab Associated sample(s):	01-05	QC Batch ID:	WG1489721-5	QC Sample:
Perfluorobutanoic Acid (PFBA)	5.70	5.82	ng/l	2		30
Perfluoropentanoic Acid (PFPeA)	13.3	13.3	ng/l	0		30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC		30
Perfluorohexanoic Acid (PFHxA)	8.54	8.82	ng/l	3		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC		30
Perfluoroheptanoic Acid (PFHpA)	14.9	14.3	ng/l	4		30
Perfluorohexanesulfonic Acid (PFHxS)	11.3	12.3	ng/l	8		30
Perfluorooctanoic Acid (PFOA)	34.4	33.0	ng/l	4		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.85F	ng/l	NC		30
Perfluorononanoic Acid (PFNA)	5.76	5.71	ng/l	1		30
Perfluorooctanesulfonic Acid (PFOS)	28.9	29.1	ng/l	1		30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/l	NC		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/l	NC		30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/l	NC		30

TOWN OF CANTON Batch Quality Control

Lab Number: L2118991

Report Date: 04/29/21

Project Number: 05.0046589.02

Project Name:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
SPLP Perfluorinated Alkyl Acids by Isotope Dilution L2118991-02 Client ID: GZ-108(3.5-5')	& EPA 1312 - Mansfield	Lab Associated sample(s)	: 01-05	QC Batch ID:	WG1489721-	5 QC Sample:
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC		30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC		30

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery 0	Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	76	76	58-132	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	103	62-163	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	99	111	70-131	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	67	73	12-142	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	76	81	57-129	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	80	86	60-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	103	71-134	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	81	91	62-129	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	91	88	14-147	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	83	90	59-139	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93	101	69-131	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	83	92	62-124	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	90	94	10-162	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61	64	24-116	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	98	105	55-137	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21	16	10-112	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	84	66	27-126	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	96	98	48-131	

Batch Quality Control Lab Number: L2118991

RPD Parameter Native Sample Duplicate Sample Units RPD Qual Limits

SPLP Perfluorinated Alkyl Acids by Isotope Dilution & EPA 1312 - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG1489721-5 QC Sample:

L2118991-02 Client ID: GZ-108(3.5-5')

TOWN OF CANTON

Project Name:

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qualif	ier %Recovery Qualifier	Criteria	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	89	92	22-136	

INORGANICS & MISCELLANEOUS

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

SAMPLE RESULTS

Lab ID: L2118991-01

Client ID: GZ-107(3.8-5.3')
Sample Location: CANTON, CT

Date Collected:

04/14/21 08:38

Date Received: Field Prep:

04/14/21 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	0.097		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	0.089		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	0.093		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	81.0		%	0.100		1	-	04/16/21 11:12	121,2540G	MC

L2118991

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02 Repor

Report Date: 04/29/21

Lab Number:

SAMPLE RESULTS

Lab ID: L2118991-02 Date Collected: 04/14/21 08:55

Client ID: GZ-108(3.5-5') Date Received: 04/14/21 Sample Location: CANTON, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mai	nsfield Lab									
Total Organic Carbon (Rep1)	0.515		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	0.573		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	0.544		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	85.0		%	0.100		1	-	04/16/21 11:12	121,2540G	MC

Lab Number:

Project Name: TOWN OF CANTON

L2118991 **Project Number: Report Date:** 04/29/21 05.0046589.02

SAMPLE RESULTS

Lab ID: Date Collected: L2118991-03 04/14/21 09:08

Client ID: GZ-110(3.7-5.2') Date Received: 04/14/21 Not Specified Sample Location: CANTON, CT Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mai	nsfield Lab									
Total Organic Carbon (Rep1)	1.54		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	1.30		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	1.42		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	80.8		%	0.100		1	-	04/16/21 11:12	121,2540G	MC

Lab Number:

Project Name: TOWN OF CANTON

L2118991 **Project Number: Report Date:** 04/29/21 05.0046589.02

SAMPLE RESULTS

Lab ID: Date Collected: L2118991-04 04/14/21 09:31

Client ID: GZ-109(3.2-4.7') Date Received: 04/14/21 Not Specified Sample Location: CANTON, CT Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mar	nsfield Lab									
Total Organic Carbon (Rep1)	0.812		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	0.823		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	0.818		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	81.2		%	0.100		1	-	04/16/21 11:12	121,2540G	MC

Project Name: TOWN OF CANTON

L2118991 **Project Number: Report Date:** 05.0046589.02

Lab Number:

04/29/21

SAMPLE RESULTS

Lab ID: L2118991-05

Client ID: GZ-111(3-4.3') Sample Location: CANTON, CT

Date Collected:

04/14/21 10:00

Date Received: 04/14/21 Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Mai	nsfield Lab									
Total Organic Carbon (Rep1)	0.575		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	0.602		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	0.588		%	0.010		1	-	04/28/21 08:49	1,9060A	SM
General Chemistry - Mansf	ield Lab									
Solids, Total	75.4		%	0.100		1	-	04/16/21 11:12	121,2540G	MC

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Lab Number:

L2118991

Report Date: 04/29/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Organic Carbon - Ma	ansfield Lab for sam	ole(s): 01-	05 Batc	h: WG	1489843-1				
Total Organic Carbon (Rep1)	ND	%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Rep2)	ND	%	0.010		1	-	04/28/21 08:49	1,9060A	SM
Total Organic Carbon (Average)	ND	%	0.010		1	-	04/28/21 08:49	1,9060A	SM

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2118991

Report Date:

04/29/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Organic Carbon - Mansfield Lab As	sociated sample(s):	01-05	Batch: WG14898	43-2					
Total Organic Carbon (Rep1)	110		-		75-125	-		25	
Total Organic Carbon (Rep2)	97		-		75-125	-		25	
Total Organic Carbon (Average)	104		-		75-125	-		25	

Project Name: TOWN OF CANTON

Project Number:

05.0046589.02

Lab Number:

L2118991

Report Date:

04/29/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Total Organic Carbon - Mansfie Sample	eld Lab Assoc	ciated sampl	le(s): 01-05	QC Batch ID	: WG14	89843-4	WG1489843-5	QC Sa	mple: L211	6753-2	4 Clie	ent ID: MS
Total Organic Carbon (Rep1)	1.08	1.04	2.22	109		2.06	90		75-125	7		25
Total Organic Carbon (Rep2)	0.957	1.24	2.20	100		2.09	97		75-125	5		25

L2118991

Lab Duplicate Analysis Batch Quality Control

Project Name: TOWN OF CANTON

05.0046589.02

Project Number:

Quality Control Lab Number:

Parameter	Native Sar	mple Duplicate Sa	mple Units	RPD	Qual	RPD Limits
General Chemistry - Mansfield Lab	Associated sample(s): 01-05 Q	QC Batch ID: WG1487097-1	QC Sample: L2	2119398-01 C	lient ID: DU	JP Sample
Solids, Total	88.0	87.1	%	1		10
Total Organic Carbon - Mansfield Lal	b Associated sample(s): 01-05	QC Batch ID: WG1489843	-3 QC Sample:	L2116753-24	Client ID:	DUP Sample
Total Organic Carbon (Rep1)	1.08	0.968	%	11		25
Total Organic Carbon (Rep2)	0.957	1.08	%	12		25
Total Organic Carbon (Average)	1.02	1.02	%	0		25

Serial_No:04292117:45 **Lab Number:** L2118991

Project Name: TOWN OF CANTON **Project Number:** 05.0046589.02

Report Date: 04/29/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2118991-01A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		A2-TS(7)
L2118991-01B	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2118991-01X	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-01X1	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-01X2	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-01X3	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-01X9	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		-
L2118991-02A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		A2-TS(7)
L2118991-02B	Plastic 8oz unpreserved	Α	NA		4.3	Y	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2118991-02X	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-02X1	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-02X2	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-02X3	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-02X9	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		-
L2118991-03A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		A2-TS(7)
L2118991-03B	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2118991-03X	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-03X1	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-03X2	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-03X3	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-03X9	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		-
L2118991-04A	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		A2-TS(7)

Lab Number: L2118991

Report Date: 04/29/21

Project Name: TOWN OF CANTON

Project Number: 05.0046589.02

Container Inforn	nauon		Initial	Final	Temp			Frozen	
Container ID (Container Type	Cooler	рH	рН	. '-	Pres	Seal	Date/Time	Analysis(*)
L2118991-04B P	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2118991-04X P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-04X1 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-04X2 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-04X3 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-04X9 P	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		-
L2118991-05A P	Plastic 2oz unpreserved for TS	Α	NA		4.3	Υ	Absent		A2-TS(7)
L2118991-05B P	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		A2-537-ISOTOPE(14),A2-TOC-9060- 2REPS(28)
L2118991-05X P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-05X1 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-05X2 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-05X3 P	Plastic 250ml unpreserved Extracts	Α	NA		4.3	Υ	Absent		A2-SPLP-537-ISOTOPE(14)
L2118991-05X9 P	Plastic 8oz unpreserved	Α	NA		4.3	Υ	Absent		-

Serial_No:04292117:45 **Lab Number:** L2118

L2118991

Report Date: 04/29/21

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
•		

Project Name:

Project Number: 05.0046589.02

TOWN OF CANTON

Project Name: Lab Number: TOWN OF CANTON L2118991 **Project Number:** 05.0046589.02 **Report Date:** 04/29/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:TOWN OF CANTONLab Number:L2118991Project Number:05.0046589.02Report Date:04/29/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:TOWN OF CANTONLab Number:L2118991Project Number:05.0046589.02Report Date:04/29/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Project Name:
 TOWN OF CANTON
 Lab Number:
 L2118991

 Project Number:
 05.0046589.02
 Report Date:
 04/29/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	CH	AIN OF CU	STODY	PAGE_	OF_	Date	Rec'	d in Lab	.4	1/1	1/8	11		ALP	PHA JOB#: [2] 499
WESTBORO, MA	MANSFIELD, MA	Project	Information		1	Re	oort li	nforma	tion -	Data	Delive	erable	es	Billi	ing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project N	lame: Town of	Conton		0	FAX	distribution of	ELEN	IAIL		20000000		Sar	me as Client info PO#:
Client Information	Salahar Salaha		ocation: Canto			0.	ADEx		□ Add	d'I Deli	iverable	35			
Client: G2A	GEEnviron	mental in Project #	05,00 4658	902		2 2 2 2 2 2 2		y Requ		ents/R	1	and the same	ts	Tim	MANY SERVICE
Address: 95 6/	lestenbur Bh	d 3rd Flor Project N	lanager: Rich	Desmoit	015	State	/Fed	Progran	7		Crit	eria			
Glasten bury,	CT 06	d 3rd Fle Project M	Quote #:				900	1	701		THE REAL PROPERTY.	100			form of Alvertage
Phone:			round Time									735			
Fax:			2000-000-000-000-000-000-000-000-000-00		No. of Co.										
Email: nichard.o	les rosiers @g	Standa Date Du		(only confirmed if pre-a)	pproved?		0/	7	/ /	7	7	/	/	/ /	/ / / 7
☐ These samples have		lyzed by Alpha		Time.		ي ا	5	/ /	/	/	/	/ /	/ /		SAMPLE HANDLING
Other Project S	pecific Requiren	nents/Comments/De	tection Limits:			ANALYO	537		//	//		/,	//	//	Done Not needed Lab to do Preservation T
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Collection	Sample Matrix	Sampler's	以	KU,	/ /		/ /	/ /	/	/	//	(Please specify below)
1 4 4 4 1	62-107	(3,8-5,31)	Date Tim 4-14-21 838		Initials	X	X	-	H	+	-	1	H	+	/ Sample Specific Comments
1011		-	-		_	+		+	\vdash	+	+	+	H		2
40%	62-108	15	4.14.21 855		TL	X	X	_		4	_	-	Н	_	2_
.03	62-110		4.14.21 908	5	TL	X	X								2
Pa	62-109	(3,2-4,7)	4.14.21	315	TL	X	X								2
.05	62-111	(3.4.3')	4.14.21 1000	5	TL	X	X								2
											+	H			
											1				
										+	+	H			
				Conta	ainer Type	P	P								Please print clearly, legibly and com-
		7			eservative		-								pletely. Samples can not be logged in and turnaround time clock will not
		Relinqui	shed By:	Date	e/Time			Receiv	ed By:				Date/	Time	start until any ambiguities are resolved
FORM NO: 01-01 (rev. 14-00 Page 84 of 84	CT-07)	William of	under	4/14/2	e/Time 1/1514 1/16:20	Nu.	Down &	Dasm	land)	il.		4/	14/21	192	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.

APPENDIX D MONITORING WELL INSTALLATION LOGS

GEOPROBE LOG

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Town of Canton Canton, Connecticut

EXPLORATION NO.: GZ-2D SHEET: 1 of 2 PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas
Drilling Co.: Glacier Drilling
Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 45 Date Start - Finish: 12/3/2020 - 12/3/2020 H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 Drilling Method: Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:
 Groundwater Depth (ft.)

 Date
 Time
 Water Depth
 Stab. Time

 12/3/2020
 3.98

		Sample Sa					본		ŧ.	Equip	mer	nt Installed
Depth (ft)	No.		Pen. (in)	Rec. (in)	PID* (ppm)	Sample Description Modified Burmister	Remark	Ö ☐ (±) ☐ Stratur ☐ Descript	n ≧≝ ion			
- - -		0-6				: Air vacuumed to 6'	1					Sand #1 (0-3')
5 _												
- - -	S-1	6-10	48	48	ND	S-1: Top 17": Loose, grey-brown, fine to medium SAND and GRAVEL, little Cobble, lit Silt, wet Bottom 31": Medium dense, brown, fine to medium SAND, little fine Gravel, trace coarse						
10	S-2	10-15	60	60	ND	Sand, trace Gravel, wet S-2: Top 27": Loose, brown, fine to medium SAND, some Gravel, little Silt, little Cobble, to Quartz, wet Bottom 33": Loose, grey-brown, fine to medion SAND, some Cobble, little Silt, little Gravel, we	race um	SAND A GRAVE				
15 _ - - -	S-3	15-20	60	60	ND	S-3: Top 51": Very dense, grey-brown, fine SAND, some Silt, some Gravel, little fine Gratrace medium SAND, wet Bottom 9": Quartz, Feldspar, BOULDER	avel,					
20	S-4	20-30	120	120	ND	S-4: Top 14": Medium dense, grey-brown, f to medium SAND, some Silt, litte Gravel, trac Cobble, wet Middle 21": Loose, brown, fine to medium SAND, little Cobble, little Silt, little Gravel, tra Silt, wet	ace		23			Grout (3-36') 2" PVC Riser (0-39.5')
25						Bottom 85": Weathered Mica, Feldspar, Sch	ist	WEATHE BEDRO				

REMARKS

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:09:31 AM

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZ-2D

GEOPROBE LOG EXPLORATION NO.: GZ-2D **GZA Town of Canton** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/3/2020 - 12/3/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore **Date** Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/3/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#; Remar Depth Sample Description Pen. Rec. PID* Depth (ft) Modified Burmister (in) (in) Description No (ft.) (ppm) 60 60 S-5: Grey MICA, Feldspar, Schist, light fracturing S-5 30-35 35 S-6 35-45 120 120 S-6: Top 16": Grey MICA, Feldspar, Schist, light fracturing Bottom 104": MICA, Feldspar, Schist. moderate Bentonite fracturing **BEDROCK** (36-38')40 Sand #1 (38-45')2" PVĆ Pre-Pack 2 Screen (39.5-44.5')45 End of exploration at 45 feet. 50 55 60 2 - 5 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 44.5 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 38 to 45 feet below grade. Bentonite seal installed from 36 to 38 feet below grade. Remaining annulus filled with grout from 3 to 36 feet below grade. Well completed with concrete collar/roadbox. REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. GZ-2D

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:09:31 AM

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/3/2020 - 12/4/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore **Date** Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#; Remark Depth Pen. Rec. (in) (in) Sample Description PID* Depth (ft) Modified Burmister Description No. (ft.) (ppm) 0-25 : Air vacuumed to 6' Sand #1 (0-3') See GZ-2D for Soil Descriptions 5 Grout (3-6') 10 2" PVC Riser (0-20')15 Bentonite (16-18')20 Sand #1 (18-25')2" PVC Pre-Pack 2 Screen (20-25')25 End of Exploration at 25 feet. 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 5 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 25 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 18 to 25 feet below grade. Bentonite seal installed from 16 to 18 feet below grade. Remaining annulus filled with grout from 3 to 16 feet below grade. Well completed with concrete collar/roadbox. REMARKS

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:33:52 PM

GEOPROBE LOG

Town of Canton Canton, Connecticut

12/1/2020 - 12/1/2020

EXPLORATION NO.: GZ-4D SHEET: 1 of 2

PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas Drilling Co.: Glacier Drilling Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.):

H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.) Date Time Water Depth Stab. Time 12/1/2020

		San	nple				본	 	Equipme	nt Installed
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID* (ppm)	Sample Description Modified Burmister	Remark	Description		
-		0-5			ND	: Air vacuumed to 5', boulder blocked hole at depth.	1	BOULDERS AND COBBLES		Sand #1 (0-
5 - -	S-1	5-10	60	60	ND	S-1: Top 19": Loose, brown, BOULDER and COBBLES, little fine to medium Sand, little Sil moist Middle 29": Loose, brown, fine to medium SA and fine GRAVEL, little Cobble, little Silt, little	ilt,	6.	5	
10 _ - -	S-2	10-15	60	60	ND	Boulders Bottom 12": Loose, brown, fine to medium SAND, little Cobble, little Boulders, trace to litt Silt, moist S-2: Top 6": Loose, brown, medium to coarse SAND, little Gravel, trace Silt, moist Next 6": Loose, grey-brown, fine to medium	tle	SAND AND	Ш	
15	S-3	15-20	60	60	ND	SAND, little Silt, wet Next 18": Loose, brown, fine to medium SANI some Coble, little coarse Sand, little Silt, mois Bottom 30": Very dense, orange-brown, fine t medium SAND, some Gravel, little to some Si little boulders, moist S-3: Top 12": Loose, brown, fine to medium	st to	GRAVEL	Ш	2" PVC Rise (0-29') Grout (4-26'
20	S-4	20-25	60	60	NM	SAND, little Silt, moist Middle 18": Medium dense, brown, fine to medium SAND, some Cobble, little Silt, wet Bottom 30": Loose, brown, fine to medium SAND, little Gravel, little coarse Sand, trace S wet	Silt,	2	<u>1</u>	
25 _ - - - - - 30	S-5	25-35	120	84	NM	S-4: Top 12": Medium dense, pale brown, fin to medium SAND, some Gravel, little to some Silt, wet, grey SCHIST, Cobble @ 20.5' Middle 24": Weathered/Crushed grey SCHIST Gravel, little to Cobble @ 20.5' Bottom 24": Grey SCHIST S-5: Top 18": Grey SCHIST, moderately freactured	2	WEATHERED ROCK		Bentonite (26-27')
KS	ND = No	amples screene ne Detected ab l, used water du	ove back	ground.	NM = Not Mea		l arts per million (p	.I	r and above backg	round readings.
Strati readi other	ification ngs ha factor	n lines rep ave been n rs than tho	resen nade a se pre	t app at the esent	roximate b times and at the time	oundaries between soil types. Actual transitions under the conditions stated. Fluctuations of gro s the measurements were made.	may be g oundwater	radual. Water level may occur due to	G	Z-4D

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 2 of 2 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/1/2020 - 12/1/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Water Depth **Date** Time Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/1/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#) Remar Depth Sample Description Pen. Rec. (in) (in) PID* Depth (ft) Modified Burmister No. Description (ft.) (ppm) Middle 36": Weathered/Crushed grey SCHIST WEATHERED Sand #1 Bottom 30": Grey SCHIST, moderately fractured (27-35') 2" PVC **ROCK** 32. Pre-Pack 2 Screen **BEDROCK** (29-34')35 35 End of exploration at 35 feet. 40 45 50 55 60 2 - 5 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 35 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 27 to 35 feet below grade. Bentonite seal installed from 25 to 27 feet below grade. Remaining annulus filled with grout from 4 to 26 feet below grade. Well completed with concrete collar/roadbox. REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. GZ-4D

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:19:21 AM

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/2/2020 - 12/2/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/2/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#) Remar Depth Pen. Rec. (in) (in) Sample Description PID* Depth (ft) Modified Burmister Description No. (ft.) (ppm) 0-21 : Air vacuumed to 6' Sand #1 (0-3') See GZ-4D for Soil Descriptions 5 Grout (3-12') 2" PVC Riser (0-16')10 Bentonite (12-14')15 Sand #1 (14-21')2" PVĆ Pre-Pack 2 GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:34:03 PM 20 Screen (16-21') End of Exploration at 21 feet. 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 5 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 21 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 14 to 21 feet below grade. Bentonite seal installed from 12 to 14 feet below grade. Remaining annulus filled with grout from 3 to 12 feet below grade. Well completed with concrete collar/roadbox. REMARKS

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/1/2020 - 12/1/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/1/2020 8.06 **Drilling Method:** Sampler Length (in.):60 Direct Push **Rock Core Size:** Equipment Installed Sample $\underbrace{\overset{\square}{\text{po}}}_{\text{form}} \overset{\square}{\text{Stratum}} \overset{\square}{\text{po}} \overset{\square}{\text{form}}$ Remar Depth Sample Description Pen. Rec. PID* Depth (ft) Modified Burmister (in) (in) No (ft.) (ppm) Description 0-6 : Air vacuumed to 6 Sand #1 (0-2') SAND AND **Bentonite GRAVEL** (2-3') 2" PVC Riser (0-5')5 ND S-1 6-10 48 48 S-1: Top 25": Very loose, brown, medium SAND, little to some Gravel, trace Silt, damp Middle 15": Very loose, brown, medium to coarse SAND, little Gravel, trace Silt Sand #1 Bottom 8": Very loose, brown, fine to medium (3-15')10 SAND, little Silt, trace Gravel, trace Cobble 2" PVC ND SAND 60 10-15 60 S-2 Pre-Pack S-2: Top 17": Very loose, brown, to medium to Screen (5-15') coarse SAND, little Gravel, trace Silt, trace fine Next 10": Very loose, brown, medium to coarse 2 SAND, little Gravel, trace fine Sand, trace Silt, 15 Next 26": Loose, pale brown, fine to coarse SAND, little Silt, Gravel, wet Bottom7": Loose, brown, fine to coase SAND, trace Gravel, trace Silt, wet End of exploration at 15 feet. 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 15 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 3 to 51 feet below grade. Bentonite seal installed from 3 to 2 feet below grade. Remaining annulus filled with grout from 0 to 2 feet below grade. Well completed with concrete collar/roadbox. REMARKS

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:00:04 AM

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 11/30/2020 - 11/30/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 11/30/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample $\underbrace{\overset{\square}{\text{po}}}_{\text{form}} \overset{\square}{\text{Stratum}} \overset{\square}{\text{po}} \overset{\square}{\text{form}}$ Remar Depth Sample Description Pen. Rec. PID* Depth (ft) Modified Burmister (in) (in) Description No. (ft.) (ppm) 0-6 : Air vacuumed to 6 Grout (0-1') Bentonite (1-2')2" PVC Riser (0-4')5 ND S-1 6-10 48 48 S-1: Brown, GRAVEL, COBBLES and medium to coarse SAND, little Silt, wet, Top 1', rest dry Sand #1 (2-15') 10 2" PVC ND SAND AND 60 Pre-Pack S-2 10-15 60 S-2: Top 31": Brown, mediuim SAND and Screen (4-14') **GRAVEL** GRAVEL, little Silt, moist Middle 11": Brown, fine to medium SAND and 2 GRAVEL, moist Bottom 18": Grey-brown, fine SAND, little fine Gravel, little Silt, moist 15 End of Exploration at 15 feet. GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:34:15 PN 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 14 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2 to 14 feet below grade. Bentonite seal installed from 1 to 2 feet below grade. Remaining annulus filled with grout from 0 to 1 feet below grade. Well completed with concrete collar/roadbox. REMARKS

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. Canton, Connecticut PROJECT NO: 05.0046589.02 Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/1/2020 - 12/1/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 **Drilling Method:** Sampler Length (in.):60 **Direct Push** Rock Core Size: Equipment Installed Sample Stratum O (#; Remark Sample Description Depth Pen. Rec. (in) PID* Depth (ft) Modified Burmister No. Description (ft.) (ppm) 0-6 : Air vacuumed to 6 Sand #1 (0-1') Bentonite See GZ-7I for Soil Descriptions (1-2')2" PVC Riser (0-4')5 Sand #1 (2-14')2" PVC 10 Pre-Pack Screen (4-14') 1 End of Exploration at 14 feet. 15 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 1 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 14 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2 to 14 feet below grade. Bentonite seal installed from 1 to 2 feet below grade. Remaining annulus filled with grout from 0 to 1 feet below grade. Well completed with concrete collar/roadbox. REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. GZ-7

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:34:20 PM

GEOPROBE LOG

Town of Canton Canton, Connecticut **EXPLORATION NO.: GZ-7I** SHEET: 1 of 1 PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas Drilling Co.: Glacier Drilling Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): Date Start - Finish: 11/30/2020 - 11/30/2020 H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:

Groundwater Depth (ft.) Date Time Water Depth Stab. Time 11/30/2020

		Sample					Ę	> €	Equipme	nt Installed
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID* (ppm)	Sample Description Modified Burmister	Remark	Stratum Description		
-		0-6				: Air vacuumed to 6'	1			Sand #1 (0-4')
5 _	-									
-	S-1	6-10	48	48	ND	S-1: Top 37": Brown, medium to coarse SAND and GRAVEL, trace to little Silt, little Cobble Bottom 11": Tight, pale brown, fine to medium SAND and fine GRAVEL, little Silt, moist				Grout (4-12') 2" PVC Riser (0-16')
10_	S-2	10-15	60	60	ND	S-2: Top 30": Tight, pale brown, fine to medium SAND and fine GRAVEL, little Silt, little Cobble, wet Bottom 30": Grey, fine SAND, some fine Gravel, little Silt, moist		SAND AND GRAVEL		Bentonite
15								GRAVEL		(12-14')
-	S-3	15-20	60	60	ND	S-3: Top 40": Brown, fine GRAVEL and medium SAND, little Silt, moist Bottom 20": Tight, red-brown, fine SAND, little fine Gravel, little Silt, moist				Sand #1 (14-16')
20 _	S-4	20-25	60	60	ND	S-4 : Quartz, Feldspar SCHIST	2	20		2" PVC Pre-Pack Screen (16-21')
-										Sand #1 (21-22')
25	S-5	25-30	60	60	NM	S-5 : Quartz, Feldspar SCHIST		BEDROCK		Bentonite (22-30')
30								30		
	$\overline{}$		ь			1		1 30		

End of exploration at 30 feet.

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. NM = Not Measured
2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 30 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC fiser. Filter sand placed in annulus around well from 14 to 22 feet below grade. Bentonite seal installed from 12 to 14 feet below grade. Remaining annulus filled with grout from 4 to 12 feet below grade. Well completed with concrete collar/roadbox.

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:24:47 AM REMARKS

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/7/2020 - 12/7/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#; Remark Depth Sample Description Pen. Rec. (in) PID* Depth (ft) Modified Burmister No. Description (ft.) (ppm) 0-13 : See GZ-8I for Soil Descriptions Sand #1 (0-1') Bentonite (1-2')2" PVC Riser (0-3')5 Sand #1 (2-13')2" PVC Pre-Pack 10 Screen (3-13') 2 End of Exploration at 13 feet. 15 GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:34:32 PM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 13 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2 to 13 feet below grade. Bentonite seal installed from 1 to 2 feet below grade. Remaining annulus filled with grout from 0 to 1 feet below grade. Well completed with concrete collar/roadbox. REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. GZ-8

GEOPROBE LOG

GZA GeoEnvironmental, Inc. Engineers and Scientists

Town of Canton Canton, Connecticut

12/7/2020 - 12/7/2020

EXPLORATION NO.: GZ-8I SHEET: 1 of 1 PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas Drilling Co.: Glacier Drilling Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.):

H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.) Date Time Water Depth Stab. Time 12/7/2020

S = 44		San	nple				Ĭ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Equipm	ent Installed
Depth (ft)	No.	Depth (ft.)	Pen. (in)			Sample Description Modified Burmister	Remark	Description	-	
5_	S-1	0-10	120	120	ND	S-1: Top 19": Loose, brown, fine to medium SAND, little Silt, little Gravel, moist Next 23": Loose, grey-brown, medium SAND, trace Silt, wet Next 44": Loose, brown, fine to medium SAND, little Silt, little Gravel, trace Cobble, wet Bottom 24": Dense, brown, fine to medium SAND, some Cobble, little Silt, little Gravel, wet	1	SAND AND GRAVEL 2. SAND 4.		Sand #1 (0-
- 10 _ - - - 15 _	S-2	10-20	120	120	ND	S-2: Top 51": Loose, brown, fine to medium SAND, little Silt, trace Gravel, wet Middle 51": Very dense, grey-brown, fine to medium SAND, some Cobble, little Silt, little Gravel, trace Boulder Bottom 18": Grey, Quartz, Mica, Feldspar SCHIST (102-114" highly fractured)		SAND AND GRAVEL		Grout (3-19 2" PVC Rise (0-23.5')
- 20 _ - -	S-3	20-28.5	102	102		S-3 : Grey, Mica, Feldspar SCHIST		BEDROCK 2		Bentonite (19.5-21.5')
- 25 _ - -							2			Sand #1 (21.5-28.5') 2" PVC Pre-Pack Screen (23.5-28.5')
30						End of exploration at 28.5 feet.				
REMARKS	ND = No 2 - 10 fer threaded from 3 to	ne Detected ab et of 2 inch dian , flush joint, PV 19.5 feet belov	ove back neter, So C riser. v grade.	kground chedule Filter sa Well co	40, threaded, flu and placed in an ompleted with co	pionization detector (PID). PID values represent meter response in parts i ush joint, 10-slot PVC well screen set at approximately 28.5 feet below granulus around well from 21.5 to 28.5 feet below grade. Bentonite seal inst	de. Well co alled from 19	mpleted in ground surface w 9.5 to 21.5 feet below grade.	ith a 2 inch diame	eter, Schedule 40,
Strati readi other	fication ngs ha facto	n lines rep ave been n rs than tho	resen nade a se pre	it app at the esent	roximate be times and at the time	oundaries between soil types. Actual transitions munder the conditions stated. Fluctuations of grour sthe measurements were made.	iay be gi idwater i	radual. Water level may occur due to	(GZ-8I

^{1 -} Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background.
2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 28.5 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 21.5 to 28.5 feet below grade. Bentonite seal installed from 19.5 to 21.5 feet below grade. Remaining annulus filled with grout from 3 to 19.5 feet below grade. Well completed with concrete collar/roadbox.

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/3/2020 - 12/3/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/3/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#) Remari Depth Pen. Rec. (in) (in) Sample Description PID* Depth (ft) Modified Burmister Description No. (ft.) (ppm) 0-13.5 : Air vacuumed to 6 Sand #1 (0-1.5')See GZ-9I for Soil Descriptions 2" PVĆ Riser (0-3.5')Bentonite (1.5-2.5')5 Sand #1 (2.5-13.') à" PVC Pre-Pack 10 Screen (3.5-13.5') 2 End of Exploration at 13.5 feet. 15 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 13.5 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2.5 to 13.5 feet below grade. Bentonite seal installed from 1.5 to 2.5 feet below grade. Remaining annulus filled with sand from 0 to 1.5 feet below grade. Well completed with concrete collar/roadbox. REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. GZ-9

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:34:44 PM

GEOPROBE LOG

GZA GeoEnvironmental, Inc. Engineers and Scientists

Town of Canton Canton, Connecticut **EXPLORATION NO.: GZ-9I** SHEET: 1 of 1 PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas Drilling Co.: Glacier Drilling Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): Date Start - Finish: 12/2/220 - 12/2/2020 H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:

Groundwater Depth (ft.) Date Time Water Depth Stab. Time 12/2/2020

S 11-	Sample Sample Description	<u> </u>	ž	> -	H.	Equip	mei	nt Installed				
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID* (ppm)	Sample Description Modified Burmister	Remark	Stratum Description	on on			
-		0-5				: Air vacuumed to 5'	1	SAND				Sand #1 (0-
5	S-1	5-10	60	60	ND	S-1: Top 24": Dense, grey, fine SAND and SILT, 1/8" orange mottling @ 2", 4", 7"; 1/4" orange mottling @ 10", moist Bottom 36": Very dense, brown, fine to medi SAND, little Gravel, little Silt, moist	ium		7	-		
) _ - - -	S-2	10-15	60	60	ND	S-2: Top 28": Loose, brown, fine to medium SAND and GRAVEL, little Silt, moist Middle 10": Loose, brown, fine to medium Sand COBBLE, little Gravel, little Silt, wet Bottom 22": Loose, red-brown, fine to mediu SAND, little Gravel, little Silt, trace Boulder, we shall be supported to the same statement of the same same same same same same same sam	AND	SAND AN GRAVE		3		Grout (3-17 2" PVC Ris (0-21')
5 _ - -	S-3	15-20	60	60	ND	S-3: Top 36": Loose, red-brown, medium S/some Gravel, trace to little Silt, wet Bottom 24": Very dense, grey-brown, fine to medium SAND, little to some Silt, trace Grav wet	AND,			H		Bentonite (17-19')
o _ _ _	S-4	20-25	60	60	ND	S-4 : Loose, medium SAND, some Gravel, lit Silt, wet	ttle	SAND				Sand #1
5 _	S-5	25-30	60	60	ND	S-5 : Top 13": Loose, grey-brown, fine to mediuim SAND, some Silt, little Gravel	2		26			(19-26') 2" PVC Pre-Pack \ Screen (21-26')
30						Middle 35": Grey SCHIST, weathered Bottom 12": Grey SCHIST		WEATHER BEDROO BEDROO	CK 29			
ARKS	ND = Noi 2 - 5 feet threaded	ne Detected abo of 2 inch diame	ove back eter, Sch C riser.	ground. edule 40 Filter sa), threaded, flus nd placed in an	End of exploration at 30 feet. bionization detector (PID). PID values represent meter response in p sh joint, 10-slot PVC well screen set at approximately 26 feet below g nulus around well from 19 to 26 feet below grade. Bentonite seal ins ollar/roadbox.	rade. Well cor	npleted in ground surfa	ce with a	2 inch diame	ter, S	Schedule 40,
 Strati eadii other	ficatio ngs ha factor	n lines repave been not those	resen nade a se pre	it appl at the esent	roximate b times and at the time	oundaries between soil types. Actual transition under the conditions stated. Fluctuations of grs the measurements were made.	s may be oundwate	gradual. Water may occur due	level e to		G	Z-9I

GEOPROBE LOG EXPLORATION NO.: **GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/4/2020 - 12/4/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 12/4/2020 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample $\underbrace{\overset{\square}{\text{po}}}_{\text{form}} \overset{\square}{\text{Stratum}} \overset{\square}{\text{po}} \overset{\square}{\text{form}}$ Remark Depth Sample Description Pen. Rec. PID* Depth (ft) Modified Burmister (in) (in) Description No. (ft.) (ppm) 0-6 : Air vacuumed to 6 Sand #1 (0-1') Bentonite (1-2')2" PVC Riser (0-3')SAND 5 ND S-1 6-10 48 48 S-1: Top 25": Loose, brown, fine to medium SAND, some Cobble, little Silt, little Gravel, trace Sand #1 coarse Sand, trace Gravel, wet (2-13')Middle 6": Loose, grey, fine to medium SAND, 2" PVC Pre-Pack some Silt 10 Screen (3-13') Bottom 17": Grey, weathered SCHIST ND 36 10-13 36 S-2 **WEATHERED** S-2: Grey, weathered Mica, Feldspar, SCHIST, 2 **BEDROCK** little Quartz 13 End of exploration at 13 feet. 15 20 GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 5/25/2021; 9:00:58 AM 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 13 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2 to 13 feet below grade. Bentonite seal installed from 1 to 2 feet below grade. Remaining annulus filled with sand from 0 to 1 feet below grade. Well completed with concrete collar/roadbox. REMARKS

GEOPROBE LOG EXPLORATION NO.: **GZ-11 GZA Town of Canton** SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0046589.02 Canton, Connecticut Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan Logged By: T. Lucas H. Datum: Drilling Co.: Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Matt Schock Final Geoprobe Depth (ft.): Date Start - Finish: 12/7/2020 - 12/7/2020 Groundwater Depth (ft.) Type of Rig: Sonic Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: GV5 Sampler O.D. (in.): 6 **Drilling Method:** Sampler Length (in.):60 Direct Push Rock Core Size: Equipment Installed Sample Stratum O (#; Remark Depth Pen. Rec. (in) (in) Sample Description PID* Depth (ft) Modified Burmister Description No. (ft.) (ppm) 0-6 : Air vacuumed to 6 Sand #1 (0-1.5')See GZ-11I for Soil Descriptions 2" PVĆ Riser (0-3.5')Bentonite (1.5-2.5')5 Sand #1 (2.5-13.5')2" PVC 10 Pre-Pack Screen (3.5-13.5')2 End of Exploration at 13.5 feet. 15 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background. 2 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 13.5 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 2.5 to 13.5 feet below grade. Bentonite seal installed from 1.5 to 2.5 feet below grade. Remaining annulus filled with sand from 0 to 1.5 feet below grade. Well completed with concrete collar/roadbox. REMARKS

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 12/10/2020; 1:33:33 PM

GEOPROBE LOG

GZA GeoEnvironmental, Inc. Engineers and Scientists

Town of Canton Canton, Connecticut

12/4/2020 - 12/4/2020

EXPLORATION NO.: GZ-11I SHEET: 1 of 1

PROJECT NO: 05.0046589.02

REVIEWED BY:

Logged By: T. Lucas Drilling Co.: Glacier Drilling Foreman: Matt Schock

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.):

H. Datum: V. Datum:

Type of Rig: Sonic Rig Model: GV5 **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 6 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.) Date Time Water Depth Stab. Time

		San	nple					논	× • •	£	Equipmo	ent Installed
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID* (ppm)	Sample Description Modified Burmister		Remark	Stratum Descriptio	n Deg± Deg±		
-		0-6				: Air vacuumed to 6'		1				Sand #1 (0
5	S-1	6-10	48	48	ND	S-1: Top 30": Loose, brown, medium to coal SAND, some Gravel, little Cobble, trace Silt, trace Boulder, wet Middle 11": Medium dense, brown, fine SAN little to some Silt, wet			SAND			Grout (3-15
10	S-2	10-16.5	78	78	ND	Bottom 7": Loose, brown, fine to medium SA little Gravel, trace Silt S-2: Top 31": Loose, brown, fine to medium SAND, little Gravel, little Silt, trace Cobble, w Next 18": Medium dense, brown, fine to med SAND, some Gravel, little Silt, little Cobble Next 21": Dense, brown, fine SAND, some Silttle Gravel, trace Cobble, wet	n vet dium					2" PVĈ Ris (0-19.5')
-	S-3	16.5-20	42	42		Bottom 8": Grey Quartz and Feldspar SCHIS S-3: Grey Quartz and Feldspar SCHIST	ST			16		Bentonite (15.5-17.5
20	S-4	20-25	60	60		S-4: Top 20": Grey, Mica and Feldspar SCH little Quartz Bottom 40": Grey, Mica and Feldspar SCHIS moderately fractured	ST,	2	BEDROC	K		Sand #1 (17.5-25') 2" PVC Pre-Pack Screen (19.5-24.5'
25						End of exploration at 25 feet.		_		25		,
₹ №	ND = No 2 - 5 feet threaded	ne Detected abo of 2 inch diame flush joint, PVO	ove back ter, Sch Criser.	ground. edule 40 Filter sa), threaded, flus nd placed in an	pionization detector (PID). PID values represent meter response in p ch joint, 10-slot PVC well screen set at approximately 25 feet below g nulus around well from 17.5 to 25 feet below grade. Bentonite seal in	grade. Well	comple	eted in ground surfac	e with a	2 inch diameter,	Schedule 40,
Stratit	fication	n lines rep	resen	t appi	roximate b	oundaries between soil types. Actual transition under the conditions stated. Fluctuations of gr s the measurements were made.	ns may b roundwa	e gra	adual. Water l	evel to	G	Z-11I

^{1 -} Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. ND = None Detected above background.
2 - 5 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 25 feet below grade. Well completed in ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 17.5 to 25 feet below grade. Bentonite seal installed from 15.5 to 17.5 feet below grade. Remaining annulus filled with grout from 3 to 15.5 feet below grade. Well completed with concrete collar/roadbox.

APPENDIX E GROUNDWATER AND SURFACE WATER FIELD DATA SHEETS

				SU	URFA(CE WAT	ER SA	MPLE I	FIELD I	LOG			
GZA GeoEnviron	mental, I	nc.			PR	ROJECT			Date:	1/15/202	21	Page 1 of 1	
95 Glastonbury B	lvd., 3rd	Floor	Project Na	me:	7	Town of Canton	n		File No.	05.0046589.02			
Glastonbury, CT	06033		Project Loc	cation:	Ca	anton, Connect	ticut		GZA Staff	Sampler: T. I	ucas	PM: R. Desrosiers	
Phone: (860) 286	5-8900												
					Sample N	Method/Device)						
GZA Staff:	T. Luca		Sample De		Grab				Surface W	ater Body	Cherry	Brook	
Weather:	30's°F,	Cloudy	Grab	Bomb	Kemmerer	Trap Bo	ttle	Other					
						Water Qua	ality Meter	Calibration Da	ıta				
pH Meter: Mode		YSI 556A		Reading:		pH 4: 4	/	pH 7: 7	/	pH 10: 10	/		
Spec. Con. Mode		YSI 556A		Standard So		1413		Reading: (sta		1408	(finish)	1413	
DO: Mode Turbidity: Mode		YSI 556A Micro TF		Standard So Standard So		100%	,	Reading: (sta		99.6	(finish)	100.0 1000/10/0.02	
Turbidity: Wode	:1.	Water	Sample	Standard St	Jiution.	1000/10/0.02	2	Reading: (sta	1	1	(IIIIISII)	1000/10/0.02	
Sample ID	Time	Depth	Depth	Turbidity	pН	S.C.	DO	Temp.	ORP	Salinity		Sample Location	
	11110	(ft.)	(ft.)	(ntu)	(su)	(uS)	(mg/L)	(C)	(mvolts)	(ppt)		Sample Escation	
S-1	1214	~4.0	0.5'	8.61	7.57	80.3	14.35	3.3	129.0	0.04			
S-2	1224	~3.5	0.5'	9.43	7.16	95.4	14.23	2.7	128.1	0.04		Small amount of river babble	
S-3*	1235	~5.5	0.5'	14.36	6.95	98.7	56.74(x)	2.6	142.9	0.05	Large amount of foam build up		
S-4	1305	~4.5	0.5'	11.07	6.74	111.4	17.15	2.6	168.3	0.05	Small	amount of (foam/river babble) buildup	
S-5	1335	~3.5	0.5'	7.72	6.77	84.7	18.26	2.4	149.3	0.05	Small	amount of (foam/river babble) buildup	
SITE SKETCH									Analysis:	PFAS MOD, Me	ethod 537 i	sotape dilution, 18 compounds	
See Figure 5 for sa	mple loca	tions.											
*S-3 Duplic			here.										
(x) 56.74 (ju	•			while)									
(A) 30.7 1 (Je	imped sec	ween oo s	705 IOI u	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

			,	WATER	LEVE	L MEA	SURE	MENT	r LOG	
95 Glasto	Environmental, onbury Blvd., 3rd		Project Name	e <u>:</u>		OJECT wn of Canton				Date: 1/13/21 Page 1 of File No. 05.0046589.02
	ury, CT 06033 860) 286-8900		Location:		Can	ton, Connecti	cut			GZA Staff/Sampler T. Lucas
Ì	rature (°F): 20's	S		N		G EQUIPME				Abbreviations: PVC = Top of PVC well riser.
Weather C	onditions: Clo	udy	Measurin	g Device:			Keck			Stl = Top of steel well casing/protector.
	<u> </u>	T = .	FiberglassTap		Electric Tape		Interface	Meter	Other	Grnd = Relative to ground surface.
Time	Well/Stream Gauge I.D.	Depth to Water (ft)	of Well (ft)	Measmnt. Datum PVC/Stl/Grnd	DNAPL Thickness (ft)	LNAPL Thickness (ft)	Correct. Factor (ft)		Com	ments/Well Condition
	GZ-1	5.12	19.30	PVC	N/A	N/A	N/A	Good		
	GZ-2D	4.30	43.70	PVC	N/A	N/A	N/A	Good		
	GZ-2I	3.63	24.85	PVC	N/A	N/A	N/A	Good		
	GZ-2	3.47	16.45	PVC	N/A	N/A	N/A	Good		
	GZ-3	3.59	18.30	PVC	N/A	N/A	N/A	Good		
	GZ-4D	3.45	33.23	PVC	N/A	N/A	N/A	Good		
	GZ-4I	3.67	20.12	PVC	N/A	N/A	N/A	Good		
	GZ-4	3.64	14.01	PVC	N/A	N/A	N/A	Good		
	GZ-5	7.19	14.02	PVC	N/A	N/A	N/A	Good		
	GZ-6	4.09	13.94	PVC	N/A	N/A	N/A	Good		
	GZ-7I	4.22	20.55	PVC	N/A	N/A	N/A	Good		
	GZ-7	3.54	13.78	PVC	N/A	N/A	N/A	Good		
	GZ-8I	4.07	29.36	PVC	N/A	N/A	N/A	Good		
	GZ-8	4.66	15.28	PVC	N/A	N/A	N/A	Good		
	GZ-9I	4.68	25.95	PVC	N/A	N/A	N/A	Good		
	GZ-9	4.74	13.24	PVC	N/A	N/A	N/A	Good		
	GZ-10	5.62	15.93	PVC	N/A	N/A	N/A	Good		
	GZ-11I	3.96	23.27	PVC	N/A	N/A	N/A	Good		
	GZ-11	4.00	12.80	PVC	N/A	N/A	N/A	Good		
	SG-1	2.81	-	ref	N/A	N/A	N/A	Good		
	SG-2	2.89	-	ref	N/A	N/A	N/A	Good		
	SG-3	3.40	-	ref	N/A	N/A	N/A	Good		
	Bridge	12.51	-	ref	N/A	N/A	N/A	Good, side	ewalk side, mic	ddle

Table 6

Hydraulic Conductivity and Screening Summary

Town of Canton 4 Barbourtown road Canton, CT

Well ID	Media Well Screened In	Top of Screen Depth	Bottom of Screen Depth	Depth to Top of Bedrock	Difference TOC and Grade	Static Water Level TOC	Static Water Level Grade					Effective	Effective Well Radius	Scroon	Effective Screen Radius			Initial Displacement	Static Water Column Height	Slug Method	Test 1 (Slug In)	Test 2 (Slug Out)	Harm_Kh
Units		FT BSG	FT BSG		FT	FT TOC	FT BSG	in	in	ft	ft	ft	in	in	ft	•	ft	ft	FT BSG	-	ft/day	ft/day	ft/day
GZ-1	OB	7	20	==	0.63	6.724	7.35	4	4	0.17	13.5	13.5	2	1	0.0833	1	12.65	0.469	12.65	Slug	0.53	4.07	2.30
GZ-2	OB	4	17.5	-	0.98	3.63	4.61	4	4	0.17	13.5	13.5	2	1	0.0833	1	12.89	0.765	12.89	Slug	3.96	1.45	2.70
GZ-2D	BR	39.5	44.5	WBR = 23' BR = 30'	0.67	4.95	5.62	6	6	0.25	5	5	3	1	0.0833	1	5	2.044	38.88	Pnuematic	2.62	2.71	2.67
GZ-2I	OB/WBR	20	25	WBR = 23'	1.04	4.452	5.49	6	6	0.25	5	5	3	1	0.0833	1	5	2.102	19.51	Pnuematic	43.75	32.76	38.26
GZ-3	OB	4.3	19.3	==	0.9	3.62	4.52	4	4	0.17	13.5	13.5	2	1	0.0833	1	14.78	1.491	14.78	Slug	0.36	0.37	0.37
GZ-4	ОВ	4.5	14.5		0.38	3.492	3.87	4	4	0.17	13.5	13.5	2	1	0.0833	1	10	1.491	10.63	Slug	0.44	0.46	0.45
GZ-4D	WBR/BR	29	34	WBR=21' BR=32.5'	0.25	3.418	3.67	6	6	0.25	5	5	3	1	0.0833	1	5	2.005	30.33	Pnuematic	2.85	2.79	2.82
GZ-4I	ОВ	16	21	-	0.23	3.457	3.69	6	6	0.25	5	5	3	1	0.0833	1	5	1.984	17.31	Pnuematic	0.36	0.39	0.38
GZ-5	OB	5	15		0.6	7.42	8.02	6	6	0.25	5	5	3	1	0.0833	1	6.98	0.579	6.98	Slug		21.55	21.55
GZ-6	OB	4	14		0.29	4.37	4.66	6	6	0.25	5	5	3	1	0.0833	1	9.34	0.579	9.34	Slug		25.64	25.64
GZ-7	OB	4	14		0.78	3.664	4.44	6	6	0.25	5	5	3	1	0.0833	1	9.56	1.034	9.56	Slug	2.16	3.94	3.05
GZ-7I	OB/BR	16	21	BR=20'	0.21	4.377	4.59	6	6	0.25	5	5	3	1	0.0833	1	5	2.121	16.41	Pnuematic	35.61	34.11	34.86
GZ-8	ОВ	3	13		-2.63	4.605	1.98	6	6	0.25	5	5	3	1	0.0833	1	10	1.329	11.03	Slug	0.35	0.46	0.41
GZ-8I	BR	23.5	28.5	BR=18.5'	-1.69	3.468	1.78	6	6	0.25	5	5	3	1	0.0833	1	5	1.986	26.72	Pnuematic	3.70	3.54	3.62
GZ-9	ОВ	3.5	13.5		0.34	5.1	5.44	6	6	0.25	5	5	3	1	0.0833	1	8.06	1.491	8.06	Slug	0.50	0.51	0.51
GZ-9I	OB	21	26	WBR=26' BR=29'	0.42	5.01	5.43	6	6	0.25	5	5	3	1	0.0833	1	5	2.25	20.57	Pnuematic	6.46	6.48	6.47
GZ-10	OB/WBR	3	13	WBR=9'	-2.64	6	3.36	6	6	0.25	5	5	3	1	0.0833	1	9.64	1.424	9.64	Slug	1.87	2.18	2.03
GZ-11	OB	3.5	13.5		0.78	3.244	4.02	6	6	0.25	5	5	3	1	0.0833	1	9.48	1.424	9.48	Slug	1.84	1.65	1.75
GZ-11I	BR	19.5	24.5	BR=14.5'	0.35	3.82	4.17	6	6	0.25	5	5	3	1	0.0833	1	5	1.982	20.33	Pnuematic	9.39	10.13	9.76

Average K/unit Geomean/unit Soil/OB 5.46 1.84 13.93 OB/WBR 25.05 4.72

4.04

\\GZAGlast\\lobs_46,500-46,999\46589.h89 Town of Canton\46589-02.rjd\Reports\Investigation Report\Tables\Table 6 Hydraulic Conductivity and Screening Summary revised.xlsx

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-2I
Sample Date:	1/13/2021

								~		
PROJECT INFORMATIO	Project Name:		Town of Canto	n	Location	n: Car	nton, CT	File No.	05.004	6589.02
WATER LEVEL OBSERY Reference Point of Measurer Well Completion: Difference Between PVC an Well Screened Interval (fbg) HACH Kit Type	nent: PVC Ris	Road Box	Measurement Casing 0.93 20-25	ound	1/13 Reference Electric Ground Electric Difference in (Reference Electric Other Field Met	ation (feet) Elevation (feat) ation - Ground E	eet):	Collector Initi 396.251 397.287 -1.036	als:	TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet Well Condition: Protective C Well head vapors: VOCs (P)	Casing - <u>poor</u> / g	3 21	m Ref. Point 4.85 .63 1.22 fes / No ; Expans ppmv	4.	.89 67 .22 <u>No</u> ; Well ID -	Total Purge Multiply lit	oint Measuremen d Sampled Voluers by 0.2642 to ncrete Collar - <u>Y</u> _ppmv	a 3.6 [get gallons	gallons or	✓liters _ppmv
Pump Type: Electri CALIBRATION DATA: Specific Conductance: pH (s.u.):	Grab c Submersible Instrument Mount Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Instrument Ins	del: del:	Peristaltic YSI 556 YSI 556	Standard Solu	Bladder Pur tion: pH 4:	np □	✓ Flow-Thru of Other: ☐ 3 Reading (start 4 pH 7: 6 Reading (start) 1413	(finish) pH 10:	
DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod	del:	YSI 556 Micro TPI YSI 556	Standard Solu Standard Solu Standard Solu	tion:	1000/10/0.02	Reading (start Reading (start Reading (start	1000/10/0.02	(finish)	
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	740	755	805	810	815	820				820
Depth to Water (ft) below Ref. point (drawdown <0.3)	3.63	3.66	3.66	3.66	3.66	3.60				3.60
Volume Purged (L)		1.35	2.25	2.7	3.15	3.6				3.6
Purge Rate (ml/min)		90	90	90	90	90				90
Temperature (3%) °C		8.6	8.7	8.7	8.8	8.8				8.8
Spec. Cond. (3%) (µS)		181.4	181.2	180.8	180.4	180.1				180.1
Salinity (3%) (ppt)		0.09	0.09	0.09	0.09	0.09				0.09
DO (10%) (mg/L)		5.01	5.06	5.03	5.00	4.96				4.96
pH (+/- 0.1) (s.u.)		5.86	5.86	5.84	5.82	5.81				5.81
ORP** (+/- 10) (mvolts)		280.2	282.6	283.2	283.8	284.5				284.5
Turbidity (<5) (10%) (ntu)		15.32	6.88	5.90	5.22	4.43				3.63
*Static measurement is be **If ORP is negative and		of equipment.	•	-			rument. If persi	stent call PM.		3.03
SAMPLING INFORMATI	ION S	ample Depth: (below g	22.5° rade _X or re		Sample Time	:: 820)	Sample ID:	GZ-2	2/DUP
Analysis PFAS	Method		No. Bottles		е Туре ОРЕ	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
DUP sample collected.										
•										
NOTES/OBSERVATIONS	<u>5:</u>									

N/A

Well Condition:

GZA GeoEnvironmental, Inc. 95 Glastonbury CT 06033

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-4D
Sample Date:	1/14/2021

Glastonbury, C1 06033								Sample Date:		1/14/2021
PROJECT INFORMATIO	N									
	Project Name:		Town of Canto	n	Location	ı: Can	ton, CT	File No.	05.004	16589.02
WATER LEVEL OBSERV Reference Point of Measuren Well Completion: Difference Between PVC and Well Screened Interval (fbg) HACH Kit Type	nent: PVC Ris Stand Pipe D d Casing Top (fe	Road Box	Measurement Casing	ound	Reference El Ground Eleve Difference in	Elevation (fe ation - Ground E		Collector Initia 395.08 395.33 -0.25	als:	TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet Well Condition: Protective C	Casing - <u>poor</u> / g	33 3 29		2 Sion Cap - Yes	3.48 3.7 9.78 / <u>No;</u> Well ID -	Total Purge Multiply lite	d Sampled Volvers by 0.2642 to	get gallons Yes / No; Well -	gallons or	✓liters
-	<u> </u>	del: del: del: del:	Low Flow Peristaltic Style 556 YSI 556 YSI 556 Micro TPI YSI 556		od: Bail Bladder Pur ation: pH 4: ation: ation:	1413 4 1000/10/0.02	Ppmv Flow-Thru Other: □ Reading (start pH 7: Reading (start Reading (start Reading (start	Cell Vol: (4601) 1413 7) 100.10%) 1000/10/0.02	nL) ✓ Ot (finish) pH 10: (finish) (finish)	ppmv he☐ 250 mL
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	900	915	945	950	955					955
Depth to Water (ft) below Ref. point (drawdown <0.3)	3.45	3.49	3.50	3.50	3.50					3.50
Volume Purged (L)		1.35	4.05	4.5	4.95					4.95
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		9.2	9.0	8.9	8.9					8.9
Spec. Cond. (3%) (µS) Salinity (3%) (ppt)		317.6	314.2	314.0	313.7					313.7
		0.15	0.15	0.14	0.14					0.14
DO (10%) (mg/L)		0.42	0.37	0.37	0.37					0.37
pH (+/- 0.1) (s.u.)		7.18	7.24	7.24	7.26					7.26
ORP** (+/- 10) (mvolts)		-82.0	-90.7	-90.9	-90.8					-90.8
Turbidity (<5) (10%) (ntu) *Static measurement is be **If ORP is negative and				3.59 than 10 mg/L;	3.22 recalibrate and	or clean instr	ument. If persi	stent call PM.		3.22
SAMPLING INFORMATI	ION S	ample Depth: (below g	31.2 radeX_ or re		Sample Time	e: 955		Sample ID:	GZ	Z-4D
Analysis PFAS	Method		No. Bottles		le Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	:									
	_									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-4I
Sample Date:	1/14/2021

PROJECT INFORMATIO	DN Project Name:		Town of Canto	n	Location	n: <u>Car</u>	nton, CT	File No.	05.004	6589.02
Well Completion: Stand Pipe Road Bo. Difference Between PVC and Casing Top (feet): Well Screened Interval (fbg) HACH Kit Type NA		Road Box	C	ound	1/14/2021 Reference Elevation (feet) Ground Elevation (feet) Difference in Elevation (feet): (Reference Elevation - Ground Elevation) Other Field Method			Collector Initials: 395.24 395.47 -0.23		TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet Well Condition: Protective of Well head vapors: VOCs (P	Casing - <u>poor</u> / g	3	m Ref. Point 0.12 .67 6.45 'es / No ; Expans ppmv	3 16	0.35 8.9 6.45 No; Well ID -	Total Purge Multiply lit	oint Measurement of Sampled Voluers by 0.2642 to ncrete Collar - Y	ı 4.95 [get gallons	gallons or	√liters ppmv
Sample Method: Bail		del: del: del: del:	Low Flow VPeristaltic VSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Purge Metho	d: Bail Bladder Pur tion: pH 4: tion: tion:	141: 1009 1000/10/0.0	Flow-Thru (Other: Reading (start pH 7: 6 Reading (start 2 Reading (start 5 Reading (star) 1413 7) 100.10%) 1000/10/0.02	mL) ☑ Otl	250 mL
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time: Depth to Water (ft) below Ref. point (drawdown <0.3)		800	820	830	835	840				840
Volume Purged (L)	3.67	3.72	3.72	3.72	3.72	3.72				3.72
Purge Rate (ml/min)		1.35	3.15	4.05	4.5	4.95				4.95
		90	90	90	90	90				90
Temperature (3%) °C		9.0	9.1	9.1	9.0	9.0				9.0
Spec. Cond. (3%) (µS) Salinity (3%) (ppt)		285.3	285.2	285.6	286.1	286.2				286.2
		0.14	0.14	0.14	0.14	0.14				0.14
DO (10%) (mg/L) pH (+/- 0.1) (s.u.)		1.52	0.75	0.82	0.80	0.78				0.78
* ` ` ` ` ` `		7.72	7.74	7.69	7.68	7.66				7.66
ORP** (+/- 10) (mvolts)		-52.1	-65.7	-72.6	-76.0	-79.5				-79.5
Turbidity (<5) (10%) (ntu) *Static measurement is be **If ORP is negative and				5.54 than 10 mg/L; r	3.99 recalibrate and	3.62 /or clean inst	rument. If persi	stent call PM.		3.62
SAMPLING INFORMAT	ION S	ample Depth: (below g	: 18'		Sample Time	e: 84	0	Sample ID:	GZ	Z-4I
Analysis PFAS	Method		No. Bottles		е Туре ЭРЕ	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>S:</u>									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-5
Sample Date:	1/12/2021

Glasionbury, C1 00033								Sample Date.		1/12/2021
PROJECT INFORMATIO	<u>N</u> Project Name:		Town of Canto	n	Location	v Car	iton, CT	File No.	05 004	6589.02
	Project Name.		Town of Canto	11	Location	ı. Cai	itoli, C1	_ File No.	03.004	0389.02
Difference Between PVC and Well Screened Interval (fbg)	nent: PVC Ris	Road Box	-	ound	Reference El Ground Elev Difference in	Elevation (fe ation - Ground E	eet):	Collector Initi 401.4 402.01 -0.61	als:	TWL
		Denth from	n Ref. Point	Depth Below	Ground	(Reference P	oint Measuremen	t - Difference in	Elevation)	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet)):	14 7	4.02 .19 .83	14 7.	63 80 83	Total Purge	d Sampled Voluers by 0.2642 to	ı 2.7 [gallons or	✓liters
Well Condition: Protective C Well head vapors: VOCs (PI			es / No ; Expans _ppmv	ion Cap - <u>Yes/</u> Methane (FID		<u>Yes / No;</u> Con	·		poor / good	_ppmv
Sample Method: Bail Denny Type: Electric	Grab C Submersible	Pump	Low Flow Peristaltic		d: Bail [Bladder Pur		✓ Flow-Thru (Cell Vol: (460)	mL) 🗹 Otl	ne□ _250 mL
pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start pH 7: Reading (start Reading (start Reading (start	7) 99.00%) 1000/10/0.02	(finish) pH 10: (finish)	10
INSTRUMENT MEASURI	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1120	1135	1140	1145	1150					1150
Depth to Water (ft) below Ref. point (drawdown <0.3)	7.19	7.22	7.22	7.22	7.22					7.22
Volume Purged (L)		1.35	1.8	2.25	2.7					2.7
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		9.7	9.7	9.5	9.5					9.5
Spec. Cond. (3%) (µS)		520.4	526.1	529.8	532.2					532.2
Salinity (3%) (ppt)		0.25	0.26	0.26	0.26					0.26
DO (10%) (mg/L)		4.49	4.56	4.59	4.49					4.49
pH (+/- 0.1) (s.u.)		6.20	6.21	6.22	6.23					6.23
ORP** (+/- 10) (mvolts)		246.5	244.5	243.1	241.7					241.7
Turbidity (<5) (10%) (ntu)		9.37	6.44	4.72	3.78					3.78
*Static measurement is be **If ORP is negative and l		of equipment.			_	or clean instr	rument. If persi	stent call PM.		3.70
SAMPLING INFORMATI	<u>on</u> s	sample Depth: (below g	11'		Sample Time	: 1150)	Sample ID:	G.	Z-5
Analysis PFAS	Method		No. Bottles		е Туре ЭЕР	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>:</u>									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-6
Sample Date:	1/12/2021

Glasionbury, C1 00033								Sample Date.		1/12/2021
PROJECT INFORMATIO										
	Project Name:		Town of Canto	n	Location	ı: Car	nton, CT	File No.	05.004	6589.02
Difference Between PVC and Well Screened Interval (fbg)	nent: PVC Ris	Road Box	-	ound	Reference Elevation of the Communication of the Com	ation (feet) Elevation (feat) ation - Ground E	eet):	Collector Initi 398.32 398.61 -0.29		TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet)):	13 4	m Ref. Point 3.94 .09 .85	4.	Ground .23 38 85	Total Purge	oint Measuremen d Sampled Volu ers by 0.2642 to	u 3.78 [Elevation) gallons or	✓liters
Well Condition: Protective C Well head vapors: VOCs (PI		<u>ood</u> ; Lock - <u>Y</u>		sion Cap - <u>Yes/l</u> Methane (FID		<u>Yes / No</u> ; Co	_		- poor / good	ppmv
1 01	Grab ☐ C Submersible	Pump	Low Flow Peristaltic	Purge Metho	d: Bail ☐ Bladder Pur		☑ Flow-Thru (Cell Vol: (460	mL) 🗹 Otl	he□ _250 mL
pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start pH 7: Reading (start Reading (start Reading (start	7 99.00% 1000/10/0.02	pH 10: (finish)	10
INSTRUMENT MEASURI	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Гіme:	1008	1023	1040	1045	1050					1050
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.09	4.12	4.12	4.12	4.12					4.12
Volume Purged (L)		1.35	2.88	3.33	3.78					3.78
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		7.9	8.0	8.0	8.0					8.0
Spec. Cond. (3%) (µS)		122.8	119.8	119.7	119.6					119.6
Salinity (3%) (ppt)		0.06	0.06	0.06	0.06					0.06
DO (10%) (mg/L)		6.80	7.10	7.06	7.00					7.00
pH (+/- 0.1) (s.u.)		5.09	5.17	5.17	5.17					5.17
ORP** (+/- 10) (mvolts)		274.0	283.1	283.1	283.6					283.6
Turbidity (<5) (10%) (ntu)		49.69	14.11	3.89	3.42					3.42
*Static measurement is be **If ORP is negative and l				than 10 mg/L; r	ecalibrate and	or clean instr	rument. If persi	stent call PM.		
SAMPLING INFORMATI	<u>on</u> s	ample Depth: (below g	rade _X or re		Sample Time	: 1050)	Sample ID:	G	Z-6
Analysis PFAS	Method		No. Bottles		е Туре ОЕР	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>.</u>									
· · · · · · · · · · · · · · · · · · ·										

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-7
Sample Date:	1/12/2021

Glastonbury, C1 06033								Sample Date:		1/12/2021
PROJECT INFORMATIO	N									
			Town of Canton	n	Location	n: <u>Car</u>	nton, CT	File No.	05.004	6589.02
Difference Between PVC and Well Screened Interval (fbg)	nent: PVC Ri Stand Pipe	Road Box	C	Jound	1/12 Reference El Ground Elev Difference in (Reference Elev Other Field Met	ation (feet) Elevation (fe ation - Ground E	eet):	Collector Initi 396.27 397.08 -0.81		TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective C Well head vapors: VOCs (PI	Casing - <u>poor</u> / g	13 3.		4.	59 .35 .24 <u>No;</u> Well ID -	Total Purge Multiply lit	ont Measuremen d Sampled Volvers by 0.2642 to ncrete Collar - <u>Y</u>	u 3.6 [o get gallons	gallons or	☑liters _ppmv
-	Grab ☐ c Submersible	Pump 🗌	Low Flow Peristaltic	_	d: Bail [Bladder Pur		☑ Flow-Thru (Cell Vol: (460	mL) 🗹 Otl	he
Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mo Instrument Mo Instrument Mo Instrument Mo Instrument Mo	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.0	Reading (start pH 7: Reading (start Reading (start Reading (start	7 99.00% 1000/10/0.02	pH 10: (finish)	10
INSTRUMENT MEASURI	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Гime:	1250	1305	1320	1325	1330					1330
Depth to Water (ft) below Ref. point (drawdown <0.3)	3.54	3.58	3.58	3.58	3.58					3.58
Volume Purged (L)		1.35	2.7	3.15	3.6					3.6
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		8.1	8.1	8.1	8.1					8.1
Spec. Cond. (3%) (µS)		102.4	102.8	102.7	102.9					102.9
Salinity (3%) (ppt)		0.05	0.05	0.05	0.05					0.05
DO (10%) (mg/L)		9.14	8.86	8.83	8.78					8.78
pH (+/- 0.1) (s.u.)		5.40	5.52	5.53	5.53					5.53
ORP** (+/- 10) (mvolts)		346.9	352.6	352.8	353.3					353.3
Turbidity (<5) (10%) (ntu)		19.12	5.49	3.91	3.25					3.25
*Static measurement is be **If ORP is negative and I		of equipment.		•		or clean inst	rument. If persi	stent call PM.		3.23
SAMPLING INFORMATI	<u>ON</u> S	Sample Depth: (below g	9' radeX_ or re		Sample Time	133	0	Sample ID:	G	Z-7
Analysis PFAS	Method		No. Bottles		e Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
MS/MSD collected.										
NOTES/OBSERVATIONS	<u>:</u>									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-7I
Sample Date:	1/12/2021

Glasionbury, C1 00033								Sample Date.		1/12/2021
PROJECT INFORMATI			Town of Canto	n	Location	n: Car	iton, CT	File No	05.004	16589.02
	Project Name:		Town of Canto	11	Location	ıı. Can	itoli, C i	File No.	03.004	10369.02
WATER LEVEL OBSEK Reference Point of Measur Well Completion: Difference Between PVC a Well Screened Interval (fbg HACH Kit Type	ement: PVC Ri Stand Pipe and Casing Top (for	Road Box	C	ound	Reference El Ground Elev Difference in	n Elevation (fe vation - Ground E	et):	Collector Initi 396.91 397.13 -0.22		TWL
		Depth fro	m Ref. Point	Depth Below	Ground	(Reference P	oint Measuremen	t - Difference in	Elevation)	
Total Length of Well (feet) Depth to Water (feet): Standing Water in Well (fe		20	0.55 1.22 6.33	.55 20.77 22 4.44 Total Purged Sampled Volu 3.15 gallons or						✓liters
Well Condition: Protective Well head vapors: VOCs (g ood ; Lock - <u>Y</u>	<u>es / No;</u> Expans _ppmv	sion Cap - <u>Yes/</u> Methane (FID		Yes / No; Con	· -			_ppmv
•	☐ Grab ☐ ric Submersible	Pump 🗌	Low Flow Peristaltic	Purge Metho	d: Bail [Bladder Pu		Flow-Thru Other:	Cell Vol: (460	mL) ✓ Ot	he
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mo Instrument Mo Instrument Mo Instrument Mo	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start PH 7: Reading (start Reading (start Reading (start	7 99.00% 1000/10/0.02	pH 10: (finish)	10
INSTRUMENT MEASU	REMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1415	1430	1435	1440	1445	1450				1450
Depth to Water (ft) below Ref. point (drawdown <0.3		4.27	4.27	4.27	4.27	4.27				4.27
Volume Purged (L)		1.35	1.8	2.25	2.7	3.15				3.15
Purge Rate (ml/min)		90	90	90	90	90				90
Temperature (3%) °C		8.8	8.7	8.7	8.6	8.7				8.7
Spec. Cond. (3%) (µS)		182.6	190.1	196.3	199.6	200.3				200.3
Salinity (3%) (ppt)		0.09	0.09	0.09	0.09	0.09				0.09
DO (10%) (mg/L)		4.15	3.83	3.69	3.50	3.44				3.44
pH (+/- 0.1) (s.u.)		5.35	5.39	5.43	5.45	5.47				5.47
ORP** (+/- 10) (mvolts)		323.4	317.9	312.8	311.0	310.5				310.5
Turbidity (<5) (10%) (ntu)		11.16	8.65	7.32	6.33	4.84				4.84
*Static measurement is **If ORP is negative an		of equipment					rument. If persi	stent call PM.		4.04
SAMPLING INFORMA	<u>rion</u> s	Sample Depth (below g	: 18.5 gradeX_ or re		Sample Time	e: 1450)	Sample ID:	G	Z-7I
Analysis PFAS	Method		No. Bottles		е Туре ОРЕ	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATION	NS:									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-8
Sample Date:	1/14/2021

Glasionbury, C1 00033								Sample Date.		1/14/2021
PROJECT INFORMATIO	N Project Name:		Town of Canto	n	Location	Cor	iton, CT	Eila No	05 004	6589.02
	Project Name.		Town of Canto	II	Location	ı. Cai	itoli, C i	File No.	03.004	0389.02
Difference Between PVC and Well Screened Interval (fbg)	nent: PVC Ris	Road Box	-	ound	Reference El Ground Elev Difference in	ation (feet) Elevation (feat) ation - Ground E	eet):	Collector Initi 395.067 392.641 2.426		TWL
		Donth from	n Ref. Point	Depth Below	Ground	(Deference D	oint Measuremen	t Difference in	Elevation)	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet)):	15 4	5.28 .66).62	12	2.85 23 0.62	Total Purge	d Sampled Voluers by 0.2642 to	ı 2.7 [gallons or	✓liters
Well Condition: Protective C Well head vapors: VOCs (PI		<u>ood</u> ; Lock - <u>Y</u>		sion Cap - <u>Yes/</u> Methane (FID		<u>Yes / No;</u> Co	·		poor / good	_ppmv
Sample Method: Bail Denump Type: Electric	Grab ☐ c Submersible	Pump	Low Flow Peristaltic		d: Bail [Bladder Pur		✓ Flow-Thru (Cell Vol: (460)	mL) 🗹 Otl	ne□ _250 mL
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start pH 7: Reading (start Reading (start Reading (start	7) 100.10%) 1000/10/0.02	(finish) pH 10: (finish)	9.99
INSTRUMENT MEASURI	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1240	1255	1300	1305	1310					1310
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.66	4.68	4.68	4.68	4.68					4.68
Volume Purged (L)		1.35	1.8	2.25	2.7					2.7
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		7.8	7.8	7.8	7.8					7.8
Spec. Cond. (3%) (µS)		212.9	211.4	210.1	209.2					209.2
Salinity (3%) (ppt)		0.10	0.10	0.10	0.10					0.10
DO (10%) (mg/L)		2.12	2.25	2.29	2.36					2.36
pH (+/- 0.1) (s.u.)		5.98	5.96	5.94	5.92					5.92
ORP** (+/- 10) (mvolts)		149.9	151.4	152.8	154.4					154.4
Turbidity (<5) (10%) (ntu)		7.13	5.40	4.29	3.62					3.62
*Static measurement is be **If ORP is negative and I		of equipment.			•	or clean instr	rument. If persi	stent call PM.		3102
SAMPLING INFORMATI	<u>ON</u> S	Sample Depth: (below g	: 8' radeX_ or re		Sample Time	: 1310)	Sample ID:	G	Z-8
Analysis PFAS	Method		No. Bottles		e Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>:</u>									

N/A

Well Condition:

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-8I
Sample Date:	1/14/2021

DDO IECE INCODMATIO	N.T.							~		
PROJECT INFORMATIO	Project Name:		Town of Canto	n	Location	ı: Car	iton, CT	File No.	05.004	6589.02
WATER LEVEL OBSERV Reference Point of Measuren Well Completion: Difference Between PVC and Well Screened Interval (fbg) HACH Kit Type	nent: PVC Ris	Road Box	C	ound	Reference El Ground Eleva Difference in	Elevation (fe ation - Ground E	eet):	Collector Initi 394.352 392.66 1.692		TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective C Well head vapors: VOCs (PI	Casing - <u>poor</u> / g	29 4 25	m Ref. Point 9.36 .07 5.29 Yes / No; Expans ppmv	2. 25	.67 38 .29 <u>No;</u> Well ID -	Total Purge Multiply lit	oint Measurement d Sampled Voluers by 0.2642 to ncrete Collar - <u>Y</u> _ppmv	4.5 [get gallons	gallons or	☑liters _ppmv
•	Grab ☐ c Submersible Instrument Mo		Low Flow Peristaltic YSI 556	Purge Method	Bladder Pur	mp 🗍	✓ Flow-Thru (Other: □		mL) ✓ Oth	ne□ _250 mL
pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 Micro TPI YSI 556	Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	pH 7: Reading (start) Reading (start) Reading (start)	7) 100.10%) 1000/10/0.02	pH 10: (finish)	9.99
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1350	1405	1425	1430	1435	1440				1440
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.07	4.12	4.12	4.12	4.12	4.12				4.12
Volume Purged (L)		1.35	3.15	3.6	4.05	4.5				4.5
Purge Rate (ml/min)		90	90	90	90	90				90
Temperature (3%) °C		8.7	8.6	8.6	8.6	8.6				8.6
Spec. Cond. (3%) (µS)		465.0	461.3	460.8	460.2	459.3				459.3
Salinity (3%) (ppt)		0.23	0.23	0.22	0.22	0.22				0.22
DO (10%) (mg/L)		2.01	2.20	2.22	2.23	2.25				2.25
pH (+/- 0.1) (s.u.)		7.47	7.56	7.56	7.57	7.58				7.58
ORP** (+/- 10) (mvolts)		116.8	110.2	109.5	109.1	108.7				108.7
Turbidity (<5) (10%) (ntu)		25.23	10.56	8.05	5.81	4.29				4.29
*Static measurement is be **If ORP is negative and		of equipment	•				rument. If persis	stent call PM.		1.27
SAMPLING INFORMATI	<u>on</u> s	sample Depth: (below g	: 25°		Sample Time	: 1440)	Sample ID:	GZ	Z-8I
Analysis PFAS	Method		No. Bottles		e Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>:</u>									

N/A

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-9
Sample Date:	1/13/2021

Glastonbury, C1 06033								Sample Date:		1/13/2021
PROJECT INFORMATIO	ON									
	Project Name:		Town of Canto	n	Location	n: <u>Car</u>	nton, CT	File No.	05.004	16589.02
WATER LEVEL OBSERY Reference Point of Measurer Well Completion: Difference Between PVC an Well Screened Interval (fbg) HACH Kit Type	ment: PVC Ris	Road Box		ound	Reference El Ground Elev Difference in	ation (feet) a Elevation (fe ation - Ground E	eet):	Collector Initi 396.84 397.18 -0.34	als:	TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet Well Condition: Protective (•	11 4 8	m Ref. Point 3.24 .74 5.50 (es / No ; Expans	5 8	3.58 .08 .50	Total Purge Multiply lit	oint Measuremen of Sampled Voluers by 0.2642 to	ı 2.7 [get gallons	gallons or	√liters
Well head vapors: VOCs (P	ID/FID)		_ppmv	Methane (FID	O/Other)		_ppmv	Other		_ppmv
-	Grab ☐	Pump 🗌	Low Flow ✓ Peristaltic ✓	Purge Metho	od: Bail _ Bladder Pur		☑Flow-Thru (Cell Vol: (460)	mL) 🗹 Ot	he
Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del:	YSI 556 YSI 556 YSI 556 Micro TPI	Standard Solu Reading: Standard Solu Standard Solu	pH 4: ition:	100% 1000/10/0.02	Reading (start pH 7: Reading (start	7) 100.00%) 1000/10/0.02	(finish) pH 10: (finish)	10
ORP (mvolts:)	Instrument Mod	del:	YSI 556	_Standard Solu	ition:	237.	5 Reading (start) 237.7	(finish)	
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1015	1030	135	1040	1045					1045
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.74	4.76	4.76	4.76	4.76					4.76
Volume Purged (L)		1.35	1.8	2.25	2.7					2.7
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		8.3	8.3	8.4	8.4					8.4
Spec. Cond. (3%) (µS)		322.9	321.7	320.5	319.2					319.2
Salinity (3%) (ppt)		0.16	0.16	0.16	0.16					0.16
DO (10%) (mg/L)		5.54	5.27	5.14	5.09					5.09
pH (+/- 0.1) (s.u.)		5.58	5.51	5.47	5.44					5.44
ORP** (+/- 10) (mvolts)		148.5	158.3	161.0	162.9					162.9
Turbidity (<5) (10%) (ntu)		8.61	5.49	3.86	2.50					2.50
*Static measurement is be **If ORP is negative and				than 10 mg/L;	recalibrate and	or clean inst	rument. If persi	stent call PM.		
SAMPLING INFORMATI	ION S	ample Depth (below g	: 9 radeX_ or re		Sample Time	: 104:	5	Sample ID:	G	Z-9
Analysis PFAS	Method		No. Bottles		e Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	<u>S:</u>									

N/A

Well Condition:

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd, 3rd Floor

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-9I
Sample Date:	1/13/2021

Glastonbury, CT 06033	501							Sample Date:		1/13/202
PROJECT INFORMATIO	<u> </u>									
	Project Name:		Town of Canto	n	_ Location	n: <u>Ca</u>	nton, CT	File No.	05.004	16589.02
		Road Box	0.52	ound	Reference El Ground Elev Difference in	ation (feet) Elevation (f	reet):	Collector Initials: 396.56 396.99 -0.43		TWL
Well Screened Interval (fbg) HACH Kit Type	NA .		21-26	<u>-</u>	(Reference Elev Other Field Met		Elevation)			_
	T.		m Ref. Point	Depth Below		(Reference	Point Measuremen	t - Difference in F	Elevation)	
Total Length of Well (feet): Depth to Water (feet):			5.95 1.68		6.38 5.11	Total Purg	ed Sampled Vol	u 4.05 Г	gallons or	√liters
Standing Water in Well (feet	i):		1.27	_	1.27		ters by 0.2642 to		- 0	_
Well Condition: Protective O Well head vapors: VOCs (P		ood; Lock - <u>Y</u>	<u>es / No;</u> Expana ppmv	sion Cap - <u>Yes/</u> Methane (FID		<u>Yes / No;</u> Co	oncrete Collar - <u>Y</u> ppmv		poor / good	_ppmv
-	Grab CSubmersible	Pump 🗌	Low Flow Peristaltic	Purge Metho	od: Bail [Bladder Pu		☑ Flow-Thru Other: □	Cell Vol: (460n	mL) 🗹 Ot	the□ _250 mL
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L):	Instrument Moo Instrument Moo Instrument Moo	lel:	YSI 556 YSI 556 YSI 556	Standard Solu Reading: Standard Solu	pH 4:		3 Reading (start 4 pH 7: % Reading (start	7	(finish) pH 10: (finish)	1
Turbidity (NTU):	Instrument Mod		Micro TPI	Standard Solu			Reading (star) Reading (star)		(IIIIISII)	-
ORP (mvolts:)	Instrument Mod	lel:	YSI 556	Standard Solu	ution:	237.	.5 Reading (star	237.7	(finish)	-
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	900	915	930	935	940	945				945
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.68	4.77	4.78	4.78	4.78	4.78				4.78
Volume Purged (L)		1.35	2.7	3.15	3.6	4.0				4.0
Purge Rate (ml/min)		90	90	90	90	90				90
Temperature (3%) °C		9.3	9.1	9.0	9.0	8.9				8.9
Spec. Cond. (3%) (µS)		285.4	287.4	287.9	288.3	288.8				288.8
Salinity (3%) (ppt)		0.14	0.14	0.14	0.14	0.14				0.14
DO (10%) (mg/L)		0.33	0.31	0.31	0.30	0.30				0.30
pH (+/- 0.1) (s.u.)		6.51	6.49	6.48	6.46	6.46				6.46
ORP** (+/- 10) (mvolts)		-44.8	-40.5	-39.7	-39.2	-38.6				-38.6
Turbidity (<5) (10%) (ntu)		16.61	8.40	6.32	5.12	4.57				4.57
*Static measurement is be **If ORP is negative and		of equipment			•		trument. If persi	stent call PM.		
SAMPLING INFORMAT	ION S	ample Depth (below §	: 23.5 gradeX_ or re		Sample Time	e: 94	15	Sample ID:	G	Z-9I
Analysis PFAS	Method		No. Bottles	Bottl	le Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	

Clear Odor: None

Color:

Product Thickness*: (*Call PM if present)

N/A

Well Condition:

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-10
Sample Date:	1/12/2021

PROJECT INFORMATIO	<u>DN</u> Project Name:		Town of Canto	n	_ Location	n: <u>Can</u>	ton, CT	File No.	05.004	16589.02
		Road Box		ound	Reference El Ground Elev Difference in	n Elevation (few vation - Ground El	./			TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet	·):	1:	m Ref. Point 5.93 6.62 0.31	2	Ground 3.29 .98 0.31	Total Purge	oint Measurement d Sampled Voluers by 0.2642 to	ı 2.7 [Elevation)	√liters
Well Condition: Protective C Well head vapors: VOCs (P		good; Lock - <u>Y</u>	<u>es / No;</u> Expans _ppmv	sion Cap - <u>Yes/</u> Methane (FID		Yes / No; Con	crete Collar - <u>Y</u> _ppmv		- poor / good	_ppmv
	Grab CSubmersible	Pump 🗌	Low Flow Peristaltic	Purge Metho	d: Bail [Bladder Pur		☑ Flow-Thru (Other: □	Cell Vol: (460	mL) 🗸 Otl	he
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:) INSTRUMENT MEASUR	Instrument Mo Instrument Mo Instrument Mo Instrument Mo Instrument Mo Instrument Mo	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start pH 7: Reading (start Reading (start Reading (start	7) 99.00%) 1000/10/0.02	pH 10: (finish)	10
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	855	910	915	920	925					925
Depth to Water (ft) below Ref. point (drawdown <0.3)		5.65	5.65	5.65	5.65					5.65
Volume Purged (L)		1.35	1.8	2.25	2.7					2.7
Purge Rate (ml/min) Temperature (3%) °C		90	90	90	90					90
Spec. Cond. (3%) (µS)		8.5 345.2	8.6 343.5	8.6 345.9	8.6 346.4					356.4
Salinity (3%) (ppt)		0.17	0.16	0.17	0.17					0.17
DO (10%) (mg/L)		2.60	2.50	2.44	2.39					2.39
pH (+/- 0.1) (s.u.)		6.05	5.99	6.00	6.02					6.02
ORP** (+/- 10) (mvolts)		76.4	76.3	76.3	76.8					76.8
Turbidity (<5) (10%) (ntu)		5.17	4.07	4.12	3.83					3.83
*Static measurement is be **If ORP is negative and		of equipment				l/or clean instr	ument. If persis	stent call PM.		3.03
SAMPLING INFORMAT	ION S	Sample Depth (below g	: 8 gradeX_ or re		Sample Time	e: 925		Sample ID:	G2	Z-10
Analysis PFAS	Method		No. Bottles		е Туре ОРЕ	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
NOTES/OBSERVATIONS	_				27/1					
Color: Clear	Odor:	None	Product Thick	ness*:	N/A		Well Condition	n:	Good	

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-11
Sample Date:	1/14/2021

Glasionbury, C1 00033								Sample Date.		1/14/2021
PROJECT INFORMATIO	<u>N</u>									
	Project Name:		Town of Canto	n	Location	ı: Car	nton, CT	File No.	05.004	6589.02
Difference Between PVC and Well Screened Interval (fbg)	nent: PVC Ris	Road Box	-	ound	1/14 Reference Elever Control Elever Con	ation (feet) Elevation (feat) ation - Ground E	eet):	Collector Initi 393.628 394.412 -0.784	als:	TWL
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet)		12 4 8	m Ref. Point 2.80 .00	4. 8.	.58 78 80	Total Purge Multiply lit	oint Measuremen d Sampled Volu ers by 0.2642 to	u 2.7 [get gallons	gallons or	✓liters
Well Condition: Protective C Well head vapors: VOCs (PI			<u>es / No;</u> Expans _ppmv	sion Cap - <u>Yes/</u> Methane (FID		<u>Yes / No;</u> Co	_		- poor / good	_ppmv
1 01	Grab ☐ C Submersible	Pump 🗌	Low Flow Peristaltic	Purge Metho	d: Bail [Bladder Pur		☑ Flow-Thru (Cell Vol: (460)	mL) 🗹 Otl	he⊡ _250 mL
pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: Standard Solu Standard Solu Standard Solu	pH 4: tion: tion:	100% 1000/10/0.02	Reading (start pH 7: Reading (start Reading (start Reading (start	7 100.10% 1000/10/0.02	(finish) pH 10: (finish)	9.99
INSTRUMENT MEASURI	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Гime:	1020	1035	1040	1045	1050					1050
Depth to Water (ft) below Ref. point (drawdown <0.3)	4.00	4.09	4.09	4.10	4.09					4.09
Volume Purged (L)		1.35	1.8	2.25	2.7					2.7
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		7.5	7.5	7.4	7.5					7.5
Spec. Cond. (3%) (µS)		46.7	50.2	50.8	51.3					51.3
Salinity (3%) (ppt)		0.02	0.02	0.02	0.02					0.02
DO (10%) (mg/L)		8.83	8.69	8.73	8.65					8.65
pH (+/- 0.1) (s.u.)		5.49	5.52	5.54	5.55					5.55
ORP** (+/- 10) (mvolts)		205.2	211.4	217.7	220.0					220.0
Turbidity (<5) (10%) (ntu)		2.65	2.19	2.94	2.31					2.31
*Static measurement is be **If ORP is negative and l				than 10 mg/L; r		or clean instr	rument. If persi	stent call PM.		
SAMPLING INFORMATI	<u>on</u> s	ample Depth: (below g	9.2' rade _X or re		Sample Time	: 1050)	Sample ID:	GZ	Z-11
Analysis PFAS	Method		No. Bottles		e Type DPE	Vol. 250 mL	Preservation As Is		Handling Cooler/Ice	
MS/MSD										
NOTES/OBSERVATIONS	<u> </u>									

N/A

Well Condition:

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd, 3rd Floor

Color:

Clear

Odor: None

GROUNDWATER SAMPLING DATA SHEET

Well ID:	GZ-11I
Sample Date:	1/14/2021

Glastonbury, CT 06033	,01							Sample Date:		1/14/2021
PROJECT INFORMATIO	<u> </u>									
	Project Name:		Town of Canto	on	Location	n: Car	nton, CT	File No.	05.004	46589.02
WATER LEVEL OBSERV	ATIONS		Measurement	Date/Time:	1/14	1/2021	_	Collector Initia	als:	TWL
Reference Point of Measurer	nent: PVC Ris	ser ✓Stee	el Casing	ound	Reference El	levation (feet)		394.243		_
Well Completion:	Stand Pipe	Road Box	✓		Ground Elev	ration (feet)		394.593		_
Difference Between PVC and	d Casing Top (fe	eet):	0.42		Difference in	n Elevation (fe	eet):	-0.35		_
Well Screened Interval (fbg)			19.5-24.5	<u>5</u>	(Reference Elev	ation - Ground E	Elevation)			
HACH Kit Type	NA			_	Other Field Met	thod				_
		Denth fro	om Ref. Point	Depth Below	Ground	(Pafaranca I	oint Measuremen	t Difference in l	Elevation)	
Total Length of Well (feet):			3.37		3.72	(Kererence i	omi weasuremen	t - Difference in i	sievation)	
Depth to Water (feet):			3.96		.31	Total Purge	ed Sampled Volu	u 4.05	gallons or	✓liters
Standing Water in Well (feet):	1	9.41	19	9.41	Multiply lit	ers by 0.2642 to	get gallons		
Well Condition: Protective C Well head vapors: VOCs (Pl		ood; Lock - <u>'</u>	<u>Yes / No;</u> Expan _ppmv	sion Cap - <u>Yes/</u> Methane (FID		<u>Yes / No</u> ; Co	ncrete Collar - <u>Y</u> _ppmv		poor/good	_ ppmv
Sample Method: Bail	Grab 🗌	Pump 🔲	Low Flow	Purge Metho	od: Bail	Pump	✓ Flow-Thru	Cell Vol: (460a	nL) 🗹 Ot	he
Pump Type:MW-5 Electric	c Submersible		Peristaltic [✓	Bladder Pu	mp 🗆	Other:			250 mL
										_
CALIBRATION DATA:										
Specific Conductance:	Instrument Mod		YSI 556	_Standard Solu			Reading (start		(finish)	
pH (s.u.):	Instrument Mod		YSI 556	_Reading:	pH 4:		4 pH 7:	7	pH 10:	9.99
DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod		YSI 556 Micro TPI	Standard Solu Standard Solu			6 Reading (start 2 Reading (start		(finish)	
ORP (mvolts:)	Instrument Mod		YSI 556	Standard Solu			Eaching (start Reading (start		(finish)	
				=			8 (<u>/</u>		-
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1125	1140	1200	1205	1210					1210
Depth to Water (ft) below										
Ref. point (drawdown <0.3)	206	4.10	4.11	4.11	4.11					4.11
	3.96	4.10	4.11	4.11	4.11					4.11
Volume Purged (L)		1.35	3.15	3.6	4.05					4.05
Purge Rate (ml/min)		90	90	90	90					90
Temperature (3%) °C		8.6	8.8	8.8	8.8					8.8
Spec. Cond. (3%) (µS)		251.6	251.5	251.4	251.5				1	251.5
Salinity (3%) (ppt)		0.12	0.12	0.12	0.12					0.12
DO (10%) (mg/L)										
pH (+/- 0.1) (s.u.)		1.34	1.53	1.50	1.56					1.56
ORP** (+/- 10) (mvolts)		6.06	6.10	6.11	6.12					6.12
Turbidity (<5) (10%) (ntu)		77.6	70.7	69.7	68.8					68.8
*Static measurement is be	efore installation	20.11	7.93	5.42	4.30					4.30
**If ORP is negative and				than 10 mg/L;	recalibrate and	l/or clean inst	rument. If persi	stent call PM.		
CAMPI INC INCORMAD	ION C	I. D 4	. 22	N.	C 1 . T		0	C I. ID.	- Cr	7 1 1 1
SAMPLING INFORMATI	i <u>on</u> s	ample Depth (below)	grade _X or r		Sample Time	e: 121	U	Sample ID:	GZ	Z-11I
Analysis	Mathad		No Dottles	Dottl	a Tuna	Vol.	Description		Handling	
Analysis	Method		No. Bottles		le Type	Vol.	Preservation		Handling Cooler/Ice	
PFAS			2	H	DPE	250 mL	As Is		Cooler/Ice	
NOTES/OBSERVATIONS	<u>):</u>									

N/A

Well Condition:

Good

APPENDIX F GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

Report of Analysis

GZA

95 Glastonbury Boulevard, 3rd Floor Glastonbury, CT 06033 Attention: Richard Desrosiers

Project Name: Town of Canton
Project Number: 05.0046589.02
Lot Number: WA16017

Date Completed:01/28/2021

Kary Coman

01/29/2021 4:13 PM
Approved and released by:
Project Manager II: **Karen L. Coonan**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative GZA

Lot Number: WA16017

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Additionally, the DoD QSM version 5.3 has been followed for these samples, and specifically Table B-15 was followed for all PFAS samples. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs, the DoD QSM, or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Samples WA16017-001 conatined a custody seal around the lid.

The continuing calibration verification (CCV) associated with samples WA16017-001, WA16017-002, WA16017-004, WA16017-006, WA16017-007, WA16017-008 for analyte: PFUdA recovered above the upper control limit. The samples associated with this CCV were non-detect for the affected analytes; therefore, the data has been reported.

Sample Summary GZA

Lot Number: WA16017

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	TB-011521	Aqueous	01/15/2021	01/16/2021
002	S-1	Aqueous	01/15/2021 1214	01/16/2021
003	S-2	Aqueous	01/15/2021 1224	01/16/2021
004	S-3	Aqueous	01/15/2021 1235	01/16/2021
005	S-4	Aqueous	01/15/2021 1305	01/16/2021
006	S-5	Aqueous	01/15/2021 1335	01/16/2021
007	DUP	Aqueous	01/15/2021	01/16/2021
008	FB-011521	Aqueous	01/15/2021 1240	01/16/2021

(8 samples)

Detection Summary GZA

Lot Number: WA16017

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
004	S-3	Aqueous	PFOS	PFAS by ID	1.4	J	ng/L	7
007	DUP	Aqueous	PFOA	PFAS by ID	1.4	J	ng/L	9

(2 detections)

Client: GZA

Laboratory ID: WA16017-001 Description: TB-011521 Matrix: Aqueous Date Sampled:01/15/2021 Date Received: 01/16/2021

Run Prep Method **Analytical Method Dilution Analysis Date Analyst Prep Date Batch** SOP SPE PFAS by ID SOP 01/20/2021 1249 MMM 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.8	2.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.9	0.98	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	3.9	0.98	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits
13C2_PFDoA	109	25-150
13C2_PFTeDA	95	25-150
13C3_PFBS	99	25-150
13C3_PFHxS	99	25-150
13C3-HFPO-DA	117	25-150
13C4_PFHpA	91	25-150
13C5_PFHxA	100	25-150
13C6_PFDA	101	25-150
13C7_PFUdA	93	25-150
13C8_PFOA	92	25-150
13C8_PFOS	106	25-150
13C9_PFNA	89	25-150
d5-EtFOSAA	91	25-150
d3-MeFOSAA	98	25-150

LOQ = Limit of Quantitation B = Detected in the method blank E = Quantitation of compound exceeded the calibration range DL = Detection Limit Q = Surrogate failure ND = Not detected at or above the DL N = Recovery is out of criteria P =The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and \ge DL$ L = LCS/LCSD failure S = MS/MSD failure H = Out of holding time W = Reported on wet weight basis

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: S-1

Laboratory ID: WA16017-002 Matrix: Aqueous

Date Sampled:01/15/2021 1214 Date Received: 01/16/2021

Run Prep Method SOP SPE **Analytical Method Dilution** PFAS by ID SOP

Analysis Date Analyst 01/20/2021 1300 MMM

Prep Date

Batch

01/19/2021 1022 79847

Parameter	CAS	Analytical	Decult O	1.00	D.I.	Unita	D
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.3	1.8	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1

Run 1	Acceptance
Q % Recovery	Limits
108	25-150
88	25-150
89	25-150
101	25-150
100	25-150
103	25-150
82	25-150
102	25-150
87	25-150
92	25-150
90	25-150
88	25-150
75	25-150
101	25-150
	Q % Recovery 108 88 89 101 100 103 82 102 87 92 90 88 75

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P =The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated result < LOQ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: S-3

Matrix: Aqueous

Date Sampled:01/15/2021 1235
Date Received: 01/16/2021

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 SOP SPE
 PFAS by ID SOP
 1
 01/20/2021 1321
 MMM
 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		6.9	1.7	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		3.4	0.86	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	1.4	J	3.4	0.86	ng/L	1

_	Run 1	Acceptance
Surrogate	Q % Recovery	/ Limits
13C2_PFDoA	109	25-150
13C2_PFTeDA	81	25-150
13C3_PFBS	93	25-150
13C3_PFHxS	78	25-150
13C3-HFPO-DA	96	25-150
13C4_PFHpA	92	25-150
13C5_PFHxA	90	25-150
13C6_PFDA	106	25-150
13C7_PFUdA	87	25-150
13C8_PFOA	89	25-150
13C8_PFOS	74	25-150
13C9_PFNA	77	25-150
d5-EtFOSAA	84	25-150
d3-MeFOSAA	97	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds 40\%}$

 $\begin{aligned} &DL = Detection \ Limit \\ &J = Estimated \ result < LOQ \ and \ge DL \end{aligned}$

Laboratory ID: WA16017-004

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: S-5

Laboratory ID: WA16017-006

Matrix: Aqueous

Date Sampled:01/15/2021 1335

SOP SPE

Date Received: 01/16/2021

Run Prep Method

Analytical MethodDilutionAnalysis DateAnalystPrep DateBatchPFAS by ID SOP101/20/2021 1403 MMM01/19/2021 1022 79847

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.5	1.9	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.8	0.94	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	3.8	0.94	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance Limits
13C2_PFDoA	101	25-150
13C2_PFTeDA	87	25-150
13C3_PFBS	92	25-150
13C3_PFHxS	77	25-150
13C3-HFPO-DA	100	25-150
13C4_PFHpA	101	25-150
13C5_PFHxA	87	25-150
13C6_PFDA	89	25-150
13C7_PFUdA	93	25-150
13C8_PFOA	90	25-150
13C8_PFOS	98	25-150
13C9_PFNA	87	25-150
d5-EtFOSAA	82	25-150
d3-MeFOSAA	105	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)*

 $[\]label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\%$

Client: GZA

Date Received: 01/16/2021

Laboratory ID: WA16017-007

Description: DUP Date Sampled:01/15/2021 Matrix: Aqueous

Run Prep Method **Analytical Method Dilution Analysis Date Analyst Prep Date Batch** SOP SPE PFAS by ID SOP 01/20/2021 1414 MMM 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.2	1.8	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	1.4 J	3.6	0.91	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.6	0.91	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	3.6	0.91	ng/L	1

Surrogate	Run 1 / Q % Recovery	Acceptance Limits	
13C2_PFDoA	111	25-150	
13C2_PFTeDA	90	25-150	
13C3_PFBS	89	25-150	
13C3_PFHxS	96	25-150	
13C3-HFPO-DA	100	25-150	
13C4_PFHpA	101	25-150	
13C5_PFHxA	95	25-150	
13C6_PFDA	96	25-150	
13C7_PFUdA	94	25-150	
13C8_PFOA	100	25-150	
13C8_PFOS	90	25-150	
13C9_PFNA	77	25-150	
d5-EtFOSAA	81	25-150	
d3-MeFOSAA	93	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P =The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated result < LOQ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA Laboratory ID: WA16017-008

Description: FB-011521 Matrix: Aqueous
Date Sampled:01/15/2021 1240

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 SOP SPE
 PFAS by ID SOP
 1
 01/20/2021 1435
 MMM
 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result C	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.9	2.2	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.5	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	4.5	1.1	ng/L	1

Run 1	Acceptance
Q % Recovery	Limits
112	25-150
91	25-150
104	25-150
99	25-150
114	25-150
108	25-150
106	25-150
107	25-150
101	25-150
108	25-150
109	25-150
95	25-150
85	25-150
109	25-150
	Q % Recovery 112 91 104 99 114 108 106 107 101 108 109 95 85

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

Date Received: 01/16/2021

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

 $\label{eq:power_power} E = \mbox{Quantitation of compound exceeded the calibration range} \\ P = \mbox{The RPD between two GC columns exceeds } 40\%$

 $\begin{aligned} &DL = Detection \ Limit \\ &J = Estimated \ result < LOQ \ and \ge DL \end{aligned}$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

QC Summary

PFAS by LC/MS/MS - MB

Sample ID: WQ79847-001

Batch: 79847

Analytical Method: PFAS by ID SOP

Matrix: Aqueous Prep Method: SOP SPE

Prep Date: 01/19/2021 1022

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
9CI-PF3ONS	ND	1	8.0	2.0	ng/L	01/20/2021 1157
11CI-PF3OUdS	ND	1	8.0	2.0	ng/L	01/20/2021 1157
GenX	ND	1	8.0	2.0	ng/L	01/20/2021 1157
ADONA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
EtFOSAA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
MeFOSAA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
PFBS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHxS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFDoA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHpA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHxA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFNA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFOA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFTeDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFTrDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFUdA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFOS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	122	25-150				
13C2_PFTeDA	99	25-150				
13C3_PFBS	93	25-150				
13C3_PFHxS	96	25-150				
13C3-HFPO-DA	103	25-150				
13C4_PFHpA	92	25-150				
13C5_PFHxA	96	25-150				
13C6_PFDA	105	25-150				
13C7_PFUdA	87	25-150				
13C7_PFUdA 13C8_PFOA	87 97	25-150 25-150				
13C8_PFOA	97	25-150				
13C8_PFOA 13C8_PFOS	97 96	25-150 25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - LCS

Sample ID: WQ79847-002

Batch: 79847

Analytical Method: PFAS by ID SOP

Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/19/2021 1022

Parameter	Spike Amount (ng/L)	Result (ng/L)	Q Dil	% Rec	% Rec Limit	Analysis Date
9CI-PF3ONS	15	14	1	93	50-150	01/20/2021 1207
11CI-PF3OUdS	15	15	1	100	50-150	01/20/2021 1207
GenX	32	34	1	105	50-150	01/20/2021 1207
ADONA	15	17	1	111	50-150	01/20/2021 1207
EtFOSAA	16	16	1	101	50-150	01/20/2021 1207
MeFOSAA	16	17	1	109	50-150	01/20/2021 1207
PFBS	14	14	1	99	50-150	01/20/2021 1207
PFHxS	15	18	1	122	50-150	01/20/2021 1207
PFDA	16	18	1	113	50-150	01/20/2021 1207
PFDoA	16	18	1	109	50-150	01/20/2021 1207
PFHpA	16	16	1	102	50-150	01/20/2021 1207
PFHxA	16	17	1	106	50-150	01/20/2021 1207
PFNA	16	17	1	105	50-150	01/20/2021 1207
PFOA	16	17	1	107	50-150	01/20/2021 1207
PFTeDA	16	18	1	111	50-150	01/20/2021 1207
PFTrDA	16	17	1	106	50-150	01/20/2021 1207
PFUdA	16	20	1	123	50-150	01/20/2021 1207
PFOS	15	14	1	97	50-150	01/20/2021 1207
Surrogate	Q % Rec	Acceptanc Limit	е			
13C2_PFDoA	110	25-150				
13C2_PFTeDA	98	25-150				
13C3_PFBS	89	25-150				
13C3_PFHxS	76	25-150				
13C3-HFPO-DA	102	25-150				
13C4_PFHpA	101	25-150				
13C5_PFHxA	94	25-150				
13C6_PFDA	97	25-150				
13C7_PFUdA	90	25-150				
13C8_PFOA	92	25-150				
13C8_PFOS	104	25-150				
13C9_PFNA	84	25-150				
d5-EtFOSAA	86	25-150				
d3-MeFOSAA	100	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

 $J = Estimated result < LOQ and \ge DL$

 $P = The \ RPD$ between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - Duplicate

Sample ID: WA16017-002DU Batch: 79847

Analytical Method: PFAS by ID SOP

Matrix: Aqueous Prep Method: SOP SPE

Prep Date: 01/19/2021 1022

Danamatan	Sample Amount	Result		0/ 555	% RPD	
Parameter	(ng/L)	(ng/L) Q	Dil	% RPD	Limit	Analysis Date
9CI-PF3ONS	ND	ND	1	0.00	20	01/20/2021 1311
11CI-PF3OUdS	ND	ND	1	0.00	20	01/20/2021 1311
GenX	ND	ND	1	0.00	20	01/20/2021 1311
ADONA	ND	ND	1	0.00	20	01/20/2021 1311
EtFOSAA	ND	ND	1	0.00	20	01/20/2021 1311
MeFOSAA	ND	ND	1	0.00	20	01/20/2021 1311
PFBS	ND	ND	1	0.00	20	01/20/2021 1311
PFHxS	ND	ND	1	0.00	20	01/20/2021 1311
PFDA	ND	ND	1	0.00	20	01/20/2021 1311
PFDoA	ND	ND	1	0.00	20	01/20/2021 1311
PFHpA	ND	ND	1	0.00	20	01/20/2021 1311
PFHxA	ND	ND	1	0.00	20	01/20/2021 1311
PFNA	ND	ND	1	0.00	20	01/20/2021 1311
PFOA	ND	ND	1	0.00	20	01/20/2021 1311
PFTeDA	ND	ND	1	0.00	20	01/20/2021 1311
PFTrDA	ND	ND	1	0.00	20	01/20/2021 1311
PFUdA	ND	ND	1	0.00	20	01/20/2021 1311
PFOS	ND	ND	1	0.00	20	01/20/2021 1311
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	117	25-150				
13C2_PFTeDA	107	25-150				
13C3_PFBS	101	25-150				
13C3_PFHxS	101	25-150				
13C3-HFPO-DA	111	25-150				
13C4_PFHpA	102	25-150				
13C5_PFHxA	102	25-150				
13C6_PFDA	99	25-150				
13C7_PFUdA	93	25-150				
13C8_PFOA	101	25-150				
13C8_PFOS	100	25-150				
13C9_PFNA	90	25-150				
d5-EtFOSAA	104	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

P = The RPD between two GC columns exceeds 40% $J = Estimated result < LOQ and \ge DL$

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - MS

Sample ID: WA16017-004MS

Batch: 79847

Analytical Method: PFAS by ID SOP

Matrix: Aqueous Prep Method: SOP SPE

Prep Date: 01/19/2021 1022

	Sample Amount	Spike Amount	Result				% Rec	
Parameter	(ng/L)	(ng/L)	(ng/L)	Q	Dil	% Rec	Limit	Analysis Date
9CI-PF3ONS	ND	13	13		1	97	50-150	01/20/2021 1332
11CI-PF3OUdS	ND	13	12		1	92	50-150	01/20/2021 1332
GenX	ND	28	25		1	89	50-150	01/20/2021 1332
ADONA	ND	13	15		1	113	50-150	01/20/2021 1332
EtFOSAA	ND	14	15		1	108	50-150	01/20/2021 1332
MeFOSAA	ND	14	16		1	119	50-150	01/20/2021 1332
PFBS	ND	12	13		1	104	50-150	01/20/2021 1332
PFHxS	ND	13	13		1	106	50-150	01/20/2021 1332
PFDA	ND	14	13		1	93	50-150	01/20/2021 1332
PFDoA	ND	14	14		1	104	50-150	01/20/2021 1332
PFHpA	ND	14	13		1	93	50-150	01/20/2021 1332
PFHxA	ND	14	17		1	120	50-150	01/20/2021 1332
PFNA	ND	14	16		1	113	50-150	01/20/2021 1332
PFOA	ND	14	15		1	111	50-150	01/20/2021 1332
PFTeDA	ND	14	15		1	110	50-150	01/20/2021 1332
PFTrDA	ND	14	14		1	104	50-150	01/20/2021 1332
PFUdA	ND	14	16		1	118	50-150	01/20/2021 1332
PFOS	1.4	13	13		1	90	50-150	01/20/2021 1332
Surrogate	Q % Red		eptance Limit					
13C2_PFDoA	109	2	25-150					
13C2_PFTeDA	91	2	25-150					
13C3_PFBS	98	2	25-150					
13C3_PFHxS	89	2	25-150					
13C3-HFPO-DA	107	2	25-150					
13C4_PFHpA	110	2	25-150					
13C5_PFHxA	86	2	25-150					
13C6_PFDA	100	2	25-150					
13C7_PFUdA	86	2	25-150					
13C8_PFOA	96	2	25-150					
13C8_PFOS	99	2	25-150					
13C9_PFNA	83	2	25-150					
d5-EtFOSAA	93	2	25-150					
d3-MeFOSAA	88	2	25-150					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

ber 114491	Corm 24244		Lot # Bar Code		WA16017	NA8	Office 5th they	Sate of the same o							OC Requirements (Speally)	Ditte	Лле	Time	1000 July 1000 J	T	Document Number: ME003N2-01
Number), p56 (6) 259 .C	ace is newhall														Date	Date	De:39	988	N I	7
LLC C 29172 791-9111	Takephone No./ Empail	Analysis (Attech list if more space is newhal)	0	90	2h/	54J		×	×	×	. <u>y</u>	<i>y</i> -	*	X	O Skin Inflant O Potenn O Proposes	T			Gooth	to Pack	
PACE ANALYTICAL SERVICES, LLC 106 Vantage Point Drive • West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com	5,603	(Inn)		Lucas	No at Cantainne by Facensies Type	HOW HOW HOW HOW HOW HOW HOW HOW HOW HOW		2	2	7	c1	2	7	2	Possitio Hurard tolentification		2. Received by	3. Received by	4. Laboratory received by	LAB USE DNI Y Received on the (Chole) Yes)
PACE ANALY 106 Vantage Point D Telephone No. 803-7 ww	Perport to Contant Degrees, 675		13.	Tyler	Section Madeix	Andy Andy stocathy angrey	- (C×	4 64	P	<i>→</i>	アド	? Y	9	P X	Sample Disposal Return to Clean I Vinsposal by Lab	7510 Mare 119.4	S Three	9 June	1601 7835	radefot	ekirChlant Capy
	_	7	(T OGO 33 Print		F.C. No.	Cathetien Cathadian Time Date(s) (Milhary)	1.15.21 4	15.21 1214		1.15.2 1235	145-21 1355	1.5.11 1335	1.15.21	1.15.4 1240	or expedited IAT.) Sangae	11	Date	Date	*\	Note: All samples are retained for four weeks from unicss other anangements are made.	y with Sample(s), Privide
alytical "	Ge Environment	ten bus		ct Catos	7.02	legangdian P be carduned an are line,)									(Prior lab approval requiped to				Fedt	samples are retained for four weeks fro unless other anangements are made.	томжения самосто
Pace Analytical	4	Matters & Gla	-Š	Project Nage:	Project No. 024658 9,02	Sample 10 / Description (Contained to card may be contained to one the.)	TB-011521		7-5	5-3	7: 7	5-5	PVP	FB-011521	Turn Around Time Required (Prior lab approval required for exmedited DRT) Sangae Disposal Standard — Trush (Specify)	1. Relinquished by	4. Recompensated by	3. Пайхүчіздед Бу	6. Revinquiened by	Note: All	DISTRIBUTION: Writte & YELLOW-Return to kalametory with Sample(s); Plivid-FieldClient Copy

	LINI KLIGHTITI Deli Circum	sin
7 ace Analytical"	Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL WA16017	/2020 1 of 2
0 50	Sample Receipt Checklist (SRC)	
Client: JEA	1/Re (1s/) A	
	Pace Client UPS FedEx Other:	. a
Yes No	1. Were custody scals present on the cooler?	
774	A 2. If custody seals were present, were they intact and unbroken?	
	Tested by:	
323.20 M	oon receipt / Derived (Corrected) temperature upon receipt	
Method: Temperatur	e Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor:	
	Wet Ice Ice Packs Dry Ice None	
	3. If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?	
☐ Yes ☐ No ☑ Ñ	PM was Notified by: phone / email / face-to-face (circle one).	
Yes No N	IA 4. Is the commercial courier's packing slip attached to this form?	
Yes No	5. Were proper custody procedures (relinquished/received) followed?	
Yes No	6. Were sample IDs listed on the COC?	
Yes No	7. Were sample IDs listed on all sample containers?	
Yes No	8. Was collection date & time listed on the COC?	┨.
Yes No	9. Was collection date & time listed on all sample containers?	
Yes No	10. Did all container label information (ID, date, time) agree with the COC?	
Yes No	11. Were tests to be performed listed on the COC?	
		 [
☑Yes ☐ No	12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)?	
Yes No	13. Was adequate sample volume available?	
Yes No	14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?	
Yes No	15. Were any samples containers missing/excess (circle one) samples Not listed on COC?	
☐Y∞ ☐No ☐N	16. For VOA and RSK-175 samples, were bubbles present >"pea-size" ('4" or 6mm in diametria any of the VOA vials?	er)
Yes No N	A 17. Were all DRO/metals/nutrient samples received at a pH of < 2?	,
	A 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9?	
	19 Were all applicable NH /TK N/graph/de/phosp//675 1/608 2 / C 0 Sm - / C complete Silvers	
☐ Yes ☐ No ☐M	A residual chlorine?	1
☐Yes ☐No ☐N	20 Worn aligns remarks from the control of the cont	
UYes UNo ☑N	A correctly transcribed from the COC into the comment section in LIMS?	
Yes No	21. Was the quote number listed on the container label? If yes, Quote # 24204	_
Sample Preservation	(Must be completed for any sample(s) incorrectly preserved or with headspace.)	
Sample(s)		
in sample receiving with	were received incorrectly preserved and were adjusted according mL of circle one: H2SO4, HNO3, HCl, NaOH using SR #	giy
Time of preservation	. If more than one preservative is needed, please note in the comments below.	
		_ .
Sample(s)	OC~ were received with bubbles >6 mm in diameter.	
Samples(s)	were received with TRC > 0.5 mg/L (If #19 is no) and were	
adjusted accordingly in s	sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID:	1
SR barcode labels applie	ad by: VISS Date: 1 16 2	
	Date, I W De	
Comments:		
Out of the		
		-
	· · · · · · · · · · · · · · · · · · ·	

Report of Analysis

GZA

95 Glastonbury Boulevard, 3rd Floor Glastonbury, CT 06033 Attention: Richard Desrosiers

Project Name: Canton

Project Number: 05.0046589.00

Lot Number: WA16018

Date Completed:01/28/2021

Kary Coman

01/29/2021 4:13 PM
Approved and released by:
Project Manager II: **Karen L. Coonan**

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

SC DHEC No: 32010001

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5639

Case Narrative GZA Lot Number: WA16018

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Additionally, the DoD QSM version 5.3 has been followed for these samples, and specifically Table B-15 was followed for all PFAS samples. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs, the DoD QSM, or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Sample 16018-003 conatined a custody seal around the lid.

The continuing calibration verification (CCV) associated with samples WA16018-001, WA16018-002, WA16018-003 for analyte: PFUdA recovered above the upper control limit. The samples associated with this CCV were non-detect for the affected analytes; therefore, the data has been reported.

Sample Summary GZA

Lot Number: WA16018

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	GZ-10	Aqueous	01/12/2021 0925	01/16/2021
002	GZ-6	Aqueous	01/12/2021 1050	01/16/2021
003	TB-011221	Aqueous	01/12/2021	01/16/2021
004	GZ-5	Aqueous	01/12/2021 1150	01/16/2021
005	FB-011221	Aqueous	01/12/2021 1225	01/16/2021
006	GZ-7	Aqueous	01/12/2021 1330	01/16/2021
007	GZ-7I	Aqueous	01/12/2021 1450	01/16/2021
800	GZ-2I	Aqueous	01/13/2021 0820	01/16/2021
009	GZ-9I	Aqueous	01/13/2021 0945	01/16/2021
010	GZ-9	Aqueous	01/13/2021 1045	01/16/2021
011	DUP-	Aqueous	01/13/2021	01/16/2021
012	GZ-2D	Aqueous	01/13/2021 1500	01/16/2021
013	EB-011321	Aqueous	01/13/2021 1530	01/16/2021
014	GZ-4I	Aqueous	01/14/2021 0840	01/16/2021
015	GZ-4D	Aqueous	01/14/2021 0955	01/16/2021
016	GZ-11	Aqueous	01/14/2021 1050	01/16/2021
017	GZ-11I	Aqueous	01/14/2021 1210	01/16/2021
018	FB-011421	Aqueous	01/14/2021 1100	01/16/2021
019	GZ-8	Aqueous	01/14/2021 1310	01/16/2021
020	GZ-8I	Aqueous	01/14/2021 1440	01/16/2021

(20 samples)

Detection Summary GZA

Lot Number: WA16018

Comercia	a Campla ID	Mate!	Darameter		Describ		l loite	
	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
001	GZ-10	Aqueous		PFAS by ID	1.2	J	ng/L	6
001	GZ-10	Aqueous		PFAS by ID	5.4		ng/L	6
001	GZ-10	Aqueous	•	PFAS by ID	4.0	J	ng/L	6
001	GZ-10	Aqueous		PFAS by ID	4.9		ng/L	6
001	GZ-10	Aqueous	PFNA	PFAS by ID	10		ng/L	6
001	GZ-10	Aqueous		PFAS by ID	3.7	J	ng/L	6
001	GZ-10	Aqueous		PFAS by ID	3.0	J	ng/L	6
004	GZ-5	Aqueous		PFAS by ID	2.3	J	ng/L	9
004	GZ-5	Aqueous	PFNA	PFAS by ID	1.8	J	ng/L	9
004	GZ-5	Aqueous	PFOA	PFAS by ID	4.2		ng/L	9
004	GZ-5	Aqueous	PFOS	PFAS by ID	11		ng/L	9
006	GZ-7	Aqueous	PFBS	PFAS by ID	3.5	J	ng/L	11
006	GZ-7	Aqueous	PFHxS	PFAS by ID	15		ng/L	11
006	GZ-7	Aqueous	PFHpA	PFAS by ID	1.2	J	ng/L	11
006	GZ-7	Aqueous	PFHxA	PFAS by ID	1.5	J	ng/L	11
006	GZ-7	Aqueous	PFOA	PFAS by ID	2.6	J	ng/L	11
006	GZ-7	Aqueous	PFOS	PFAS by ID	14		ng/L	11
007	GZ-7I	Aqueous	PFBS	PFAS by ID	4.2		ng/L	12
007	GZ-7I	Aqueous	PFHxS	PFAS by ID	56		ng/L	12
007	GZ-7I	Aqueous	PFHpA	PFAS by ID	31		ng/L	12
007	GZ-7I	Aqueous	PFHxA	PFAS by ID	27		ng/L	12
007	GZ-7I	Aqueous	PFNA	PFAS by ID	4.5		ng/L	12
007	GZ-7I	Aqueous	PFOA	PFAS by ID	28		ng/L	12
007	GZ-7I	Aqueous	PFOS	PFAS by ID	20		ng/L	12
800	GZ-2I	Aqueous	PFBS	PFAS by ID	12		ng/L	13
800	GZ-2I	Aqueous	PFHxS	PFAS by ID	180		ng/L	13
800	GZ-2I	Aqueous	PFHpA	PFAS by ID	370		ng/L	13
800	GZ-2I	Aqueous	PFHxA	PFAS by ID	260		ng/L	13
800	GZ-2I	Aqueous	PFNA	PFAS by ID	42		ng/L	13
800	GZ-2I	Aqueous	PFOA	PFAS by ID	280		ng/L	13
800	GZ-2I	Aqueous	PFOS	PFAS by ID	58		ng/L	13
009	GZ-9I	Aqueous	PFHpA	PFAS by ID	1.4	J	ng/L	14
009	GZ-9I	Aqueous		PFAS by ID	1.5	J	ng/L	14
009	GZ-9I	Aqueous		PFAS by ID	2.4	J	ng/L	14
009	GZ-9I	Aqueous		PFAS by ID	1.5	J	ng/L	14
010	GZ-9	Aqueous		PFAS by ID	1.5	J	ng/L	15
010	GZ-9	Aqueous		PFAS by ID	1.3	J	ng/L	15
010	GZ-9	Aqueous		PFAS by ID	1.5	J	ng/L	15
010	GZ-9	Aqueous		PFAS by ID	1.4	J	ng/L	15
010	GZ-9	Aqueous		PFAS by ID	2.5	J	ng/L	15
010	GZ-9	Aqueous		PFAS by ID	5.4	-	ng/L	15
011	DUP-	Aqueous		PFAS by ID	12		ng/L	16
011	DUP-	Aqueous		PFAS by ID	190		ng/L	16
011	DUP-	Aqueous		PFAS by ID	350		ng/L	16
011	DUP-	Aqueous	•	PFAS by ID	270		ng/L	16
011	D01 -	Aqueous	1 1 1100	TTAS by ID	210		119/L	10

Detection Summary (Continued)

Lot Number: WA16018

Sample	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
011	DUP-	Aqueous	PFNA	PFAS by ID	41		ng/L	16
011	DUP-	Aqueous	PFOA	PFAS by ID	290		ng/L	16
011	DUP-	Aqueous	PFOS	PFAS by ID	58		ng/L	16
012	GZ-2D	Aqueous	PFHxS	PFAS by ID	2.2	J	ng/L	17
012	GZ-2D	Aqueous	PFHpA	PFAS by ID	3.9	J	ng/L	17
012	GZ-2D	Aqueous	PFOA	PFAS by ID	2.0	J	ng/L	17
012	GZ-2D	Aqueous	PFOS	PFAS by ID	6.5		ng/L	17
014	GZ-4I	Aqueous	PFBS	PFAS by ID	1.9	J	ng/L	19
014	GZ-4I	Aqueous	PFHxS	PFAS by ID	18		ng/L	19
014	GZ-4I	Aqueous	PFHpA	PFAS by ID	6.5		ng/L	19
014	GZ-4I	Aqueous	PFHxA	PFAS by ID	8.6		ng/L	19
014	GZ-4I	Aqueous	PFNA	PFAS by ID	3.2	J	ng/L	19
014	GZ-4I	Aqueous	PFOA	PFAS by ID	4.5		ng/L	19
014	GZ-4I	Aqueous	PFOS	PFAS by ID	8.2		ng/L	19
015	GZ-4D	Aqueous	PFBS	PFAS by ID	2.6	J	ng/L	20
015	GZ-4D	Aqueous	PFHxS	PFAS by ID	21		ng/L	20
015	GZ-4D	Aqueous	PFHpA	PFAS by ID	15		ng/L	20
015	GZ-4D	Aqueous	PFHxA	PFAS by ID	16		ng/L	20
015	GZ-4D	Aqueous	PFNA	PFAS by ID	19		ng/L	20
015	GZ-4D	Aqueous	PFOA	PFAS by ID	15		ng/L	20
015	GZ-4D	Aqueous	PFOS	PFAS by ID	32		ng/L	20
016	GZ-11	Aqueous	PFHxS	PFAS by ID	1.8	J	ng/L	21
017	GZ-11I	Aqueous	PFBS	PFAS by ID	1.3	J	ng/L	22
017	GZ-11I	Aqueous	PFHxS	PFAS by ID	12		ng/L	22
017	GZ-11I	Aqueous	PFHpA	PFAS by ID	6.7		ng/L	22
017	GZ-11I	Aqueous	PFHxA	PFAS by ID	8.5		ng/L	22
017	GZ-11I	Aqueous	PFOA	PFAS by ID	2.7	J	ng/L	22
017	GZ-11I	Aqueous	PFOS	PFAS by ID	3.3	J	ng/L	22
019	GZ-8	Aqueous	PFHxS	PFAS by ID	4.7		ng/L	24
019	GZ-8	Aqueous	PFHpA	PFAS by ID	2.7	J	ng/L	24
019	GZ-8	Aqueous	PFHxA	PFAS by ID	2.9	J	ng/L	24
020	GZ-8I	Aqueous	PFHxS	PFAS by ID	5.8		ng/L	25
020	GZ-8I	Aqueous	PFHpA	PFAS by ID	4.3		ng/L	25
020	GZ-8I	Aqueous	PFHxA	PFAS by ID	5.2		ng/L	25
020	GZ-8I	Aqueous	PFOA	PFAS by ID	2.8	J	ng/L	25
020	GZ-8I	Aqueous	PFOS	PFAS by ID	1.2	J	ng/L	25

(81 detections)

Client: GZA

Laboratory ID: WA16018-001 Matrix: Aqueous

Description: GZ-10

Date Sampled:01/12/2021 0925

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution Analysis Date Analyst PFAS by ID SOP

01/20/2021 1445 MMM

Prep Date

Batch 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	1.2	J	4.2	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	5.4		4.2	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	4.0	J	4.2	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	4.9		4.2	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	10		4.2	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	3.7	J	4.2	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	3.0	J	4.2	1.1	ng/L	1

Acceptance

	Surrogate	Q	% Recovery	Limits
ľ	13C2_PFDoA		101	25-150
	13C2_PFTeDA		96	25-150
	13C3_PFBS		109	25-150
	13C3_PFHxS		105	25-150
	13C3-HFPO-DA		110	25-150
	13C4_PFHpA		99	25-150
	13C5_PFHxA		105	25-150
	13C6_PFDA		114	25-150
	13C7_PFUdA		92	25-150
	13C8_PFOA		103	25-150
	13C8_PFOS		98	25-150
	13C9_PFNA		91	25-150
	d5-EtFOSAA		92	25-150
	d3-MeFOSAA		106	25-150

Run 1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Laboratory ID: WA16018-002

Matrix: Aqueous

Description: GZ-6

Date Sampled:01/12/2021 1050

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution Analysis Date Analyst PFAS by ID SOP

01/20/2021 1456 MMM 01/19/2021 1022 79847

Prep Date

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
		otance nits					

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		117	25-150
13C2_PFTeDA		104	25-150
13C3_PFBS		115	25-150
13C3_PFHxS		109	25-150
13C3-HFPO-DA		126	25-150
13C4_PFHpA		117	25-150
13C5_PFHxA		97	25-150
13C6_PFDA		98	25-150
13C7_PFUdA		103	25-150
13C8_PFOA		109	25-150
13C8_PFOS		118	25-150
13C9_PFNA		98	25-150
d5-EtFOSAA		91	25-150
d3-MeFOSAA		116	25-150

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: TB-011221

Laboratory ID: WA16018-003

Matrix: Aqueous

Date Sampled:01/12/2021 Date Received:01/16/2021

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch
1 SOP SPE PFAS by ID SOP 1 01/20/2021 1507 MMM 01/19/2021 1022 79847

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.7	1.9	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1

Surrogate	Run 1 Q % Recovery	Acceptance ery Limits
13C2_PFDoA	105	25-150
13C2_PFTeDA	103	25-150
13C3_PFBS	100	25-150
13C3_PFHxS	106	25-150
13C3-HFPO-DA	102	25-150
13C4_PFHpA	102	25-150
13C5_PFHxA	94	25-150
13C6_PFDA	110	25-150
13C7_PFUdA	97	25-150
13C8_PFOA	107	25-150
13C8_PFOS	108	25-150
13C9_PFNA	112	25-150
d5-EtFOSAA	87	25-150
d3-MeFOSAA	111	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Client: GZA

Laboratory ID: WA16018-004

Description: GZ-5

Matrix: Aqueous

Date Sampled:01/12/2021 1150

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1510 JJG

Prep Date 01/20/2021 1356 80099

Batch

Parameter	CAS Number	Analytical Method	Result	Q L	.00	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	2.3	J	4.2	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	1.8	J	4.2	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	4.2		4.2	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	11		4.2	1.1	ng/L	1
Ru	ın 1 Accep	otance						

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		94	25-150	
13C2_PFTeDA		95	25-150	
13C3_PFBS		102	25-150	
13C3_PFHxS		102	25-150	
13C3-HFPO-DA		108	25-150	
13C4_PFHpA		106	25-150	
13C5_PFHxA		103	25-150	
13C6_PFDA		97	25-150	
13C7_PFUdA		100	25-150	
13C8_PFOA		107	25-150	
13C8_PFOS		98	25-150	
13C9_PFNA		101	25-150	
d5-EtFOSAA		86	25-150	
d3-MeFOSAA		98	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Client: GZA

Run Prep Method

Description: FB-011221

Laboratory ID: WA16018-005 Matrix: Aqueous

Date Sampled:01/12/2021 1225

SOP SPE

Date Received: 01/16/2021

Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1438 JJG

Prep Date 01/20/2021 1356 80099

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	9.1	2.3	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.6	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	4.6	1.1	ng/L	1

Acceptance

Run 1

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		108	25-150	
13C2_PFTeDA		104	25-150	
13C3_PFBS		106	25-150	
13C3_PFHxS		107	25-150	
13C3-HFPO-DA		112	25-150	
13C4_PFHpA		108	25-150	
13C5_PFHxA		108	25-150	
13C6_PFDA		105	25-150	
13C7_PFUdA		106	25-150	
13C8_PFOA		120	25-150	
13C8_PFOS		95	25-150	
13C9_PFNA		106	25-150	
d5-EtFOSAA		99	25-150	
d3-MeFOSAA		106	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-7

Laboratory ID: WA16018-006 Matrix: Aqueous

Date Sampled:01/12/2021 1330

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1520 JJG

Prep Date

Batch 01/20/2021 1356 80099

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	3.5	J	4.1	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	15		4.1	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	1.2	J	4.1	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	1.5	J	4.1	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	2.6	J	4.1	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	14		4.1	1.0	ng/L	1

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		94	25-150	
13C2_PFTeDA		62	25-150	
13C3_PFBS		104	25-150	
13C3_PFHxS		102	25-150	
13C3-HFPO-DA		107	25-150	
13C4_PFHpA		108	25-150	
13C5_PFHxA		106	25-150	
13C6_PFDA		99	25-150	
13C7_PFUdA		93	25-150	
13C8_PFOA		110	25-150	
13C8_PFOS		93	25-150	
13C9_PFNA		99	25-150	
d5-EtFOSAA		85	25-150	
d3-MeFOSAA		89	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

Client: GZA

Description: GZ-7I

Laboratory ID: WA16018-007 Matrix: Aqueous

Date Sampled:01/12/2021 1450

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1552 JJG

Prep Date

Batch 01/20/2021 1356 80099

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.4	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	4.2	4.2	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	56	4.2	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.2	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.2	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	31	4.2	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	27	4.2	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	4.5	4.2	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	28	4.2	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.2	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.2	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.2	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	20	4.2	1.1	ng/L	1
Ru	ın 1 Accep	otance					

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		64	25-150
13C2_PFTeDA		48	25-150
13C3_PFBS		96	25-150
13C3_PFHxS		86	25-150
13C3-HFPO-DA		110	25-150
13C4_PFHpA		104	25-150
13C5_PFHxA		106	25-150
13C6_PFDA		89	25-150
13C7_PFUdA		78	25-150
13C8_PFOA		109	25-150
13C8_PFOS		69	25-150
13C9_PFNA		93	25-150
d5-EtFOSAA		60	25-150
d3-MeFOSAA		73	25-150

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Laboratory ID: WA16018-008 Matrix: Aqueous

Description: GZ-2I

Date Sampled:01/13/2021 0820

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1603 JJG

Prep Date

Batch 01/20/2021 1356 80099

Parameter	CAS Number	Analytical Method	Result (2 LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND ND	8.3		ng/L	1
		•			2.1	•	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	8.3	2.1	ng/L	Į
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.3	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.3	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.3	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.3	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	12	4.2	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	180	4.2	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.2	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.2	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	370	4.2	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	260	4.2	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	42	4.2	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	280	4.2	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.2	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.2	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.2	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	58	4.2	1.0	ng/L	1

Acceptance

Run 1

	Surrogate	Q	% Recovery	Limits
•	13C2_PFDoA		102	25-150
	13C2_PFTeDA		104	25-150
	13C3_PFBS		108	25-150
	13C3_PFHxS		104	25-150
	13C3-HFPO-DA		114	25-150
	13C4_PFHpA		106	25-150
	13C5_PFHxA		110	25-150
	13C6_PFDA		103	25-150
	13C7_PFUdA		106	25-150
	13C8_PFOA		114	25-150
	13C8_PFOS		96	25-150
	13C9_PFNA		105	25-150
	d5-EtFOSAA		93	25-150
	d3-MeFOSAA		93	25-150

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-9I

Laboratory ID: WA16018-009

Date Sampled:01/13/2021 0945

Date Received: 01/16/2021

Matrix: Aqueous

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch SOP SPE PFAS by ID SOP 01/21/2021 1614 JJG 01/20/2021 1356 80099

	CAS	Analytical					_
Parameter	Number	Method	Result	Q LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	7.8	1.9	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	1.4	J 3.9	0.97	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	1.5	J 3.9	0.97	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	2.4	J 3.9	0.97	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	3.9	0.97	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	1.5	J 3.9	0.97	ng/L	1

Surrogate	Run 1 A Q % Recovery	Acceptance Limits
13C2_PFDoA	111	25-150
13C2_PFTeDA	111	25-150
13C3_PFBS	119	25-150
13C3_PFHxS	116	25-150
13C3-HFPO-DA	129	25-150
13C4_PFHpA	119	25-150
13C5_PFHxA	120	25-150
13C6_PFDA	118	25-150
13C7_PFUdA	118	25-150
13C8_PFOA	124	25-150
13C8_PFOS	108	25-150
13C9_PFNA	113	25-150
d5-EtFOSAA	106	25-150
d3-MeFOSAA	109	25-150

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-9

Laboratory ID: WA16018-010 Matrix: Aqueous

Date Sampled:01/13/2021 1045

Date Received: 01/16/2021

Run Prep Method 1 SOP SPE Analytical Method Dilution Analysis Date Analyst PFAS by ID SOP

01/21/2021 1624 JJG

Prep Date

Batch 01/20/2021 1356 80099

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.4	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	1.5	J	4.2	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	1.3	J	4.2	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	1.5	J	4.2	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	1.4	J	4.2	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	2.5	J	4.2	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.2	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	5.4		4.2	1.1	ng/L	1
Surrogate Q % Rec	covery Lir	otance nits						

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		102	25-150	
13C2_PFTeDA		101	25-150	
13C3_PFBS		106	25-150	
13C3_PFHxS		101	25-150	
13C3-HFPO-DA		112	25-150	
13C4_PFHpA		109	25-150	
13C5_PFHxA		112	25-150	
13C6_PFDA		101	25-150	
13C7_PFUdA		102	25-150	
13C8_PFOA		113	25-150	
13C8_PFOS		99	25-150	
13C9_PFNA		101	25-150	
d5-EtFOSAA		90	25-150	
d3-MeFOSAA		101	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: DUP
Laboratory ID: WA16018-011

Matrix: Aqueous

Date Sampled:01/13/2021 Date Received:01/16/2021

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch
1 SOP SPE PFAS by ID SOP 1 01/21/2021 1635 JJG 01/20/2021 1356 80099

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3)	763051-92-9	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.0	2.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	12	4.0	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	190	4.0	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.0	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.0	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	350	4.0	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	270	4.0	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	41	4.0	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	290	4.0	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.0	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.0	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.0	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	58	4.0	1.0	ng/L	1

Surrogate	Run 1 A Q % Recovery	Acceptance Limits
13C2_PFDoA	102	25-150
13C2_PFTeDA	105	25-150
13C3_PFBS	102	25-150
13C3_PFHxS	96	25-150
13C3-HFPO-DA	112	25-150
13C4_PFHpA	107	25-150
13C5_PFHxA	104	25-150
13C6_PFDA	98	25-150
13C7_PFUdA	100	25-150
13C8_PFOA	108	25-150
13C8_PFOS	100	25-150
13C9_PFNA	102	25-150
d5-EtFOSAA	90	25-150
d3-MeFOSAA	103	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-2D

Laboratory ID: WA16018-012 Matrix: Aqueous

Date Sampled:01/13/2021 1500 Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1656 JJG

Prep Date 01/20/2021 1030 80047

Batch

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.2	2.1	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	2.2 J	4.1	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	3.9 J	4.1	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	2.0 J	4.1	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.1	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	6.5	4.1	1.0	ng/L	1

Acceptance

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		96	25-150
13C2_PFTeDA		94	25-150
13C3_PFBS		97	25-150
13C3_PFHxS		97	25-150
13C3-HFPO-DA		101	25-150
13C4_PFHpA		101	25-150
13C5_PFHxA		100	25-150
13C6_PFDA		98	25-150
13C7_PFUdA		97	25-150
13C8_PFOA		103	25-150
13C8_PFOS		93	25-150
13C9_PFNA		96	25-150
d5-EtFOSAA		93	25-150
d3-MeFOSAA		97	25-150

Run 1

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: EB-011321

Laboratory ID: WA16018-013 Matrix: Aqueous

Date Sampled:01/13/2021 1530 Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1449 JJG

Prep Date

Batch 01/20/2021 1030 80047

CAS Analytical LOQ DL Parameter Number Result Q Units Run Method PFAS by ID SOP 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS) 756426-58-1 ND 8.2 2.0 ng/L 1 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3...) 763051-92-9 PFAS by ID SOP ND 8.2 ng/L 1 2.0 Hexafluoropropylene oxide dimer acid (GenX) PFAS by ID SOP ND 8.2 13252-13-6 ng/L 1 2.0 4,8-dioxa-3H-perfluorononanoic acid (ADONA) 919005-14-4 PFAS by ID SOP ND 8.2 ng/L 2.0 1 N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA) 2991-50-6 PFAS by ID SOP ND 8.2 ng/L 1 2.0 N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA) 2355-31-9 PFAS by ID SOP ND 8.2 ng/L 1 2.0 Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 PFAS by ID SOP ND 4.1 1.0 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 PFAS by ID SOP ND 4 1 1 0 ng/L 1 Perfluoro-n-decanoic acid (PFDA) 335-76-2 PFAS by ID SOP ND 4.1 1.0 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 PFAS by ID SOP ND 4.1 1.0 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 PFAS by ID SOP ND 4.1 1.0 ng/L 1 Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 PFAS by ID SOP ND 4 1 1.0 ng/L 1 Perfluoro-n-nonanoic acid (PFNA) 375-95-1 PFAS by ID SOP ND 4.1 1.0 ng/L 1 Perfluoro-n-octanoic acid (PFOA) PFAS by ID SOP 335-67-1 ND 4.1 1.0 ng/L Perfluoro-n-tetradecanoic acid (PFTeDA) 376-06-7 PFAS by ID SOP ND 4.1 1.0 ng/L Perfluoro-n-tridecanoic acid (PFTrDA) 72629-94-8 PFAS by ID SOP ND 4.1 ng/L 1 1.0 Perfluoro-n-undecanoic acid (PFUdA) 2058-94-8 PFAS by ID SOP ND 4.1 1.0 ng/L 1 Perfluorooctanesulfonic acid (PFOS) 1763-23-1 PFAS by ID SOP ND 4 1 1.0 ng/L 1

Acceptance

Run 1

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		85	25-150	
13C2_PFTeDA		75	25-150	
13C3_PFBS		86	25-150	
13C3_PFHxS		85	25-150	
13C3-HFPO-DA		89	25-150	
13C4_PFHpA		87	25-150	
13C5_PFHxA		88	25-150	
13C6_PFDA		84	25-150	
13C7_PFUdA		85	25-150	
13C8_PFOA		91	25-150	
13C8_PFOS		80	25-150	
13C9_PFNA		80	25-150	
d5-EtFOSAA		77	25-150	
d3-MeFOSAA		88	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and ≥ DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-4I

Laboratory ID: WA16018-014 Matrix: Aqueous

Date Sampled:01/14/2021 0840

SOP SPE

Date Received: 01/16/2021

Run Prep Method

Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1707 JJG

Prep Date

Batch 01/20/2021 1030 80047

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	1.9	J	4.1	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	18		4.1	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	6.5		4.1	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	8.6		4.1	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	3.2	J	4.1	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	4.5		4.1	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	8.2		4.1	1.0	ng/L	1
	ın 1 Accep covery Lin	otance nits						

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		91	25-150	
13C2_PFTeDA		95	25-150	
13C3_PFBS		99	25-150	
13C3_PFHxS		95	25-150	
13C3-HFPO-DA		103	25-150	
13C4_PFHpA		102	25-150	
13C5_PFHxA		101	25-150	
13C6_PFDA		99	25-150	
13C7_PFUdA		100	25-150	
13C8_PFOA		106	25-150	
13C8_PFOS		99	25-150	
13C9_PFNA		94	25-150	
d5-EtFOSAA		93	25-150	
d3-MeFOSAA		103	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-4D

Laboratory ID: WA16018-015 Matrix: Aqueous

Date Sampled:01/14/2021 0955

SOP SPE

Date Received: 01/16/2021

Run Prep Method

Analytical Method Dilution Analysis Date Analyst Prep Date Batch PFAS by ID SOP 1 01/21/2021 1718 JJG 01/20/2021 1030 80047

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3	.) 763051-92-9	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		7.8	1.9	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	2.6	J	3.9	0.97	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	21		3.9	0.97	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		3.9	0.97	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		3.9	0.97	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	15		3.9	0.97	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	16		3.9	0.97	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	19		3.9	0.97	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	15		3.9	0.97	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		3.9	0.97	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		3.9	0.97	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		3.9	0.97	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	32		3.9	0.97	ng/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits	
13C2_PFDoA	86 25-150	
13C2_PFTeDA	84 25-150	
13C3_PFBS	91 25-150	
13C3_PFHxS	92 25-150	
13C3-HFPO-DA	97 25-150	
13C4_PFHpA	94 25-150	
13C5_PFHxA	97 25-150	
13C6_PFDA	92 25-150	
13C7_PFUdA	91 25-150	
13C8_PFOA	96 25-150	
13C8_PFOS	77 25-150	
13C9_PFNA	88 25-150	
d5-EtFOSAA	89 25-150	
d3-MeFOSAA	88 25-150	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and $\geq DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-11

Laboratory ID: WA16018-016 Matrix: Aqueous

Date Sampled:01/14/2021 1050

Perfluorooctanesulfonic acid (PFOS)

Date Received: 01/16/2021

Run Prep Method Analytical Method Dilution
1 SOP SPE PFAS by ID SOP 1

Analysis Date Analyst 01/21/2021 1728 JJG

Prep Date Batch 01/20/2021 1030 80047

CAS Analytical LOQ Parameter Number Result Q DL Units Run Method PFAS by ID SOP 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS) 756426-58-1 ND 7.9 2.0 ng/L 1 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3...) 763051-92-9 PFAS by ID SOP 7.9 ND ng/L 1 2.0 Hexafluoropropylene oxide dimer acid (GenX) PFAS by ID SOP ND 7 9 13252-13-6 ng/L 1 2.0 4,8-dioxa-3H-perfluorononanoic acid (ADONA) 919005-14-4 PFAS by ID SOP ND 7.9 ng/L 1 2.0 N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA) 2991-50-6 PFAS by ID SOP ND 7.9 ng/L 1 2.0 N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA) 2355-31-9 PFAS by ID SOP ND 7.9 ng/L 1 2.0 Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 PFAS by ID SOP ND 4.0 0.99 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 PFAS by ID SOP 18 4 0 0.99 ng/L 1 Perfluoro-n-decanoic acid (PFDA) 335-76-2 PFAS by ID SOP ND 4.0 0.99 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 PFAS by ID SOP ND 4.0 0.99 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 PFAS by ID SOP 0.99 ND 4.0 ng/L 1 Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 PFAS by ID SOP ND 40 0.99 ng/L 1 Perfluoro-n-nonanoic acid (PFNA) 375-95-1 PFAS by ID SOP ND 4.0 0.99 ng/L 1 PFAS by ID SOP 0.99 Perfluoro-n-octanoic acid (PFOA) 335-67-1 ND 4.0 ng/L Perfluoro-n-tetradecanoic acid (PFTeDA) 376-06-7 PFAS by ID SOP ND 4.0 0.99 ng/L Perfluoro-n-tridecanoic acid (PFTrDA) 72629-94-8 PFAS by ID SOP ND 4.0 ng/L 1 0.99 Perfluoro-n-undecanoic acid (PFUdA) 2058-94-8 PFAS by ID SOP ND 4.0 0.99 ng/L 1

PFAS by ID SOP

ND

40

0.99

ng/L

1

1763-23-1

Acceptance

Run 1

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		90	25-150
13C2_PFTeDA		89	25-150
13C3_PFBS		97	25-150
13C3_PFHxS		94	25-150
13C3-HFPO-DA		101	25-150
13C4_PFHpA		100	25-150
13C5_PFHxA		102	25-150
13C6_PFDA		93	25-150
13C7_PFUdA		94	25-150
13C8_PFOA		103	25-150
13C8_PFOS		91	25-150
13C9_PFNA		93	25-150
d5-EtFOSAA		91	25-150
d3-MeFOSAA		89	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: GZ-11I

ZA Laboratory ID: WA16018-017
Z-11I Matrix: Aqueous

Date Sampled:01/14/2021 1210 Date Received:01/16/2021

Run Prep Method 1 SOP SPE Analytical Method Dilution PFAS by ID SOP 1

Analysis Date Analyst 01/21/2021 1800 JJG Prep Date Batch 01/20/2021 1030 80047

CAS Analytical LOQ DL Parameter Number Result Q Units Run Method PFAS by ID SOP 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS) 756426-58-1 ND 8.1 2.0 ng/L 1 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3...) 763051-92-9 PFAS by ID SOP ND 8.1 ng/L 1 2.0 Hexafluoropropylene oxide dimer acid (GenX) PFAS by ID SOP ND 8.1 ng/L 13252-13-6 1 2.0 4,8-dioxa-3H-perfluorononanoic acid (ADONA) 919005-14-4 PFAS by ID SOP ND 8.1 ng/L 1 2.0 N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA) 2991-50-6 PFAS by ID SOP ND 8.1 ng/L 1 2.0 N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA) 2355-31-9 PFAS by ID SOP ND 8.1 ng/L 1 2.0 Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 PFAS by ID SOP 1.3 4.0 1.0 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 PFAS by ID SOP 12 4 0 1 0 ng/L 1 Perfluoro-n-decanoic acid (PFDA) 335-76-2 PFAS by ID SOP ND 4.0 1.0 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 PFAS by ID SOP ND 4.0 1.0 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 PFAS by ID SOP 6.7 4.0 1.0 ng/L 1 Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 PFAS by ID SOP 8.5 40 1.0 ng/L 1 Perfluoro-n-nonanoic acid (PFNA) 375-95-1 PFAS by ID SOP ND 4.0 1.0 ng/L 1 PFAS by ID SOP Perfluoro-n-octanoic acid (PFOA) 335-67-1 27 4.0 1.0 ng/L Perfluoro-n-tetradecanoic acid (PFTeDA) 376-06-7 PFAS by ID SOP ND 4.0 1.0 ng/L Perfluoro-n-tridecanoic acid (PFTrDA) 72629-94-8 PFAS by ID SOP ND 4.0 ng/L 1 1.0 Perfluoro-n-undecanoic acid (PFUdA) 2058-94-8 PFAS by ID SOP ND 4.0 1.0 ng/L 1 Perfluorooctanesulfonic acid (PFOS) 1763-23-1 PFAS by ID SOP 3.3 4.0 1.0 ng/L 1

Acceptance

Run 1

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		88	25-150
13C2_PFTeDA		81	25-150
13C3_PFBS		97	25-150
13C3_PFHxS		93	25-150
13C3-HFPO-DA		112	25-150
13C4_PFHpA		100	25-150
13C5_PFHxA		107	25-150
13C6_PFDA		97	25-150
13C7_PFUdA		94	25-150
13C8_PFOA		109	25-150
13C8_PFOS		85	25-150
13C9_PFNA		99	25-150
d5-EtFOSAA		82	25-150
d3-MeFOSAA		91	25-150

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

H = Out of holding time

B = Detected in the method blank
N = Recovery is out of criteria
W = Reported on wet weight basis

E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated result < LOQ and <math>\geq DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Description: FB-011421 Date Sampled:01/14/2021 1100 Laboratory ID: WA16018-018 Matrix: Aqueous

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution Analysis Date Analyst PFAS by ID SOP

01/21/2021 1459 JJG

Prep Date

Batch 01/20/2021 1030 80047

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND	8.7	2.2	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND	4.4	1.1	ng/L	1
Ru	ın 1 Accep	otance					

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		108	25-150	
13C2_PFTeDA		104	25-150	
13C3_PFBS		103	25-150	
13C3_PFHxS		112	25-150	
13C3-HFPO-DA		114	25-150	
13C4_PFHpA		109	25-150	
13C5_PFHxA		111	25-150	
13C6_PFDA		107	25-150	
13C7_PFUdA		111	25-150	
13C8_PFOA		120	25-150	
13C8_PFOS		99	25-150	
13C9_PFNA		109	25-150	
d5-EtFOSAA		103	25-150	
d3-MeFOSAA		100	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$ Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Laboratory ID: WA16018-019

Description: GZ-8

Matrix: Aqueous

Date Sampled:01/14/2021 1310 Date Received: 01/16/2021

SOP SPE

Run Prep Method

Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/21/2021 1811 JJG

Prep Date

Batch 01/20/2021 1030 80047

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3)	763051-92-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Hexafluoropropylene oxide dimer acid (GenX)	13252-13-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA)	2991-50-6	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA)	2355-31-9	PFAS by ID SOP	ND		8.2	2.0	ng/L	1
Perfluoro-1-butanesulfonic acid (PFBS)	375-73-5	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluorohexanesulfonic acid (PFHxS)	355-46-4	PFAS by ID SOP	4.7		4.1	1.0	ng/L	1
Perfluoro-n-decanoic acid (PFDA)	335-76-2	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-dodecanoic acid (PFDoA)	307-55-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-heptanoic acid (PFHpA)	375-85-9	PFAS by ID SOP	2.7	J	4.1	1.0	ng/L	1
Perfluoro-n-hexanoic acid (PFHxA)	307-24-4	PFAS by ID SOP	2.9	J	4.1	1.0	ng/L	1
Perfluoro-n-nonanoic acid (PFNA)	375-95-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-octanoic acid (PFOA)	335-67-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-tetradecanoic acid (PFTeDA)	376-06-7	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-tridecanoic acid (PFTrDA)	72629-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluoro-n-undecanoic acid (PFUdA)	2058-94-8	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Perfluorooctanesulfonic acid (PFOS)	1763-23-1	PFAS by ID SOP	ND		4.1	1.0	ng/L	1
Ru	ın 1 Accep	otance						

Surrogate	Q	% Recovery	Limits	
13C2_PFDoA		89	25-150	
13C2_PFTeDA		92	25-150	
13C3_PFBS		98	25-150	
13C3_PFHxS		95	25-150	
13C3-HFPO-DA		103	25-150	
13C4_PFHpA		97	25-150	
13C5_PFHxA		98	25-150	
13C6_PFDA		93	25-150	
13C7_PFUdA		99	25-150	
13C8_PFOA		106	25-150	
13C8_PFOS		103	25-150	
13C9_PFNA		99	25-150	
d5-EtFOSAA		92	25-150	
d3-MeFOSAA		92	25-150	

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit $J = Estimated \ result < LOQ \ and \ge DL$

Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

Client: GZA

Laboratory ID: WA16018-020

Description: GZ-8I

Matrix: Aqueous

Date Sampled:01/14/2021 1440

Date Received: 01/16/2021

Run Prep Method SOP SPE Analytical Method Dilution PFAS by ID SOP

Analysis Date Analyst 01/25/2021 2105 JJG

Prep Date Batch 01/21/2021 1050 80206

CAS Analytical LOQ Parameter Number Result Q DL Units Run Method PFAS by ID SOP 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS) 756426-58-1 ND 7.7 1.9 ng/L 1 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3...) 763051-92-9 PFAS by ID SOP ND 7.7 1.9 ng/L 1 Hexafluoropropylene oxide dimer acid (GenX) PFAS by ID SOP ND 77 13252-13-6 1.9 ng/L 1 4,8-dioxa-3H-perfluorononanoic acid (ADONA) 919005-14-4 PFAS by ID SOP ND 7.7 ng/L 1 1.9 N-ethylperfluoro-1-octanesulfonamidoacetic acid (EtFOSAA) 2991-50-6 PFAS by ID SOP ND 7.7 ng/L 1 1.9 N-methylperfluoro-1-octanesulfonamidoacetic acid (MeFOSAA) 2355-31-9 PFAS by ID SOP ND 7.7 ng/L 1 1.9 Perfluoro-1-butanesulfonic acid (PFBS) 375-73-5 PFAS by ID SOP ND 3.9 0.97 ng/L Perfluorohexanesulfonic acid (PFHxS) 355-46-4 PFAS by ID SOP 5.8 39 0.97 ng/L 1 Perfluoro-n-decanoic acid (PFDA) 335-76-2 PFAS by ID SOP ND 3.9 0.97 ng/L Perfluoro-n-dodecanoic acid (PFDoA) 307-55-1 PFAS by ID SOP ND 3.9 0.97 ng/L Perfluoro-n-heptanoic acid (PFHpA) 375-85-9 PFAS by ID SOP 3.9 0.97 4.3 ng/L 1 5.2 Perfluoro-n-hexanoic acid (PFHxA) 307-24-4 PFAS by ID SOP 39 0.97 ng/L 1 Perfluoro-n-nonanoic acid (PFNA) 375-95-1 PFAS by ID SOP ND 3.9 0.97 ng/L 1 PFAS by ID SOP 3.9 0.97 Perfluoro-n-octanoic acid (PFOA) 335-67-1 2.8 ng/L Perfluoro-n-tetradecanoic acid (PFTeDA) 376-06-7 PFAS by ID SOP ND 3.9 0.97 ng/L Perfluoro-n-tridecanoic acid (PFTrDA) 72629-94-8 PFAS by ID SOP ND 3.9 ng/L 1 0.97 Perfluoro-n-undecanoic acid (PFUdA) 2058-94-8 PFAS by ID SOP 3.9 ND 0.97 ng/L 1 Perfluorooctanesulfonic acid (PFOS) 1763-23-1 PFAS by ID SOP 12 39 0.97 ng/L 1

Acceptance

Run 1

Surrogate	Q	% Recovery	Limits
13C2_PFDoA		100	25-150
13C2_PFTeDA		91	25-150
13C3_PFBS		95	25-150
13C3_PFHxS		96	25-150
13C3-HFPO-DA		101	25-150
13C4_PFHpA		96	25-150
13C5_PFHxA		101	25-150
13C6_PFDA		95	25-150
13C7_PFUdA		94	25-150
13C8_PFOA		101	25-150
13C8_PFOS		97	25-150
13C9_PFNA		100	25-150
d5-EtFOSAA		95	25-150
d3-MeFOSAA		100	25-150

LOQ = Limit of Quantitation ND = Not detected at or above the DL H = Out of holding time

B = Detected in the method blank N = Recovery is out of criteria W = Reported on wet weight basis E = Quantitation of compound exceeded the calibration range P = The RPD between two GC columns exceeds 40%

DL = Detection Limit J = Estimated result < LOQ and ≥ DL Q = Surrogate failure L = LCS/LCSD failure S = MS/MSD failure

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

QC Summary

PFAS by LC/MS/MS - MB

Sample ID: WQ79847-001 Batch: 79847 Analytical Method: PFAS by ID SOP Matrix: Aqueous Prep Method: SOP SPE

Prep Date: 01/19/2021 1022

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
9CI-PF3ONS	ND	1	8.0	2.0	ng/L	01/20/2021 1157
11CI-PF3OUdS	ND	1	8.0	2.0	ng/L	01/20/2021 1157
GenX	ND	1	8.0	2.0	ng/L	01/20/2021 1157
ADONA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
EtFOSAA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
MeFOSAA	ND	1	8.0	2.0	ng/L	01/20/2021 1157
PFBS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHxS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFDoA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHpA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFHxA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFNA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFOA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFTeDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFTrDA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFUdA	ND	1	4.0	1.0	ng/L	01/20/2021 1157
PFOS	ND	1	4.0	1.0	ng/L	01/20/2021 1157
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	122	25-150				
13C2_PFTeDA	99	25-150				
13C3_PFBS	93	25-150				
13C3_PFHxS	96	25-150				
13C3-HFPO-DA	103	25-150				
13C4_PFHpA	92	25-150				
13C5_PFHxA	96	25-150				
13C6_PFDA	105	25-150				
13C7_PFUdA	87	25-150				
13C8_PFOA	97	25-150				
13C8_PFOS	96	25-150				
13C9_PFNA	92	25-150				
d5-EtFOSAA	90	25-150				
d3-MeFOSAA	110	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - LCS

Sample ID: WQ79847-002 Batch: 79847 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/19/2021 1022

	Spike					
	Amount	Result		0/ 5	% Rec	
Parameter	(ng/L)	(ng/L) Q	Dil	% Rec	Limit	Analysis Date
9CI-PF3ONS	15	14	1	93	50-150	01/20/2021 1207
11CI-PF3OUdS	15	15	1	100	50-150	01/20/2021 1207
GenX	32	34	1	105	50-150	01/20/2021 1207
ADONA	15	17	1	111	50-150	01/20/2021 1207
EtFOSAA	16	16	1	101	50-150	01/20/2021 1207
MeFOSAA	16	17	1	109	50-150	01/20/2021 1207
PFBS	14	14	1	99	50-150	01/20/2021 1207
PFHxS	15	18	1	122	50-150	01/20/2021 1207
PFDA	16	18	1	113	50-150	01/20/2021 1207
PFDoA	16	18	1	109	50-150	01/20/2021 1207
PFHpA	16	16	1	102	50-150	01/20/2021 1207
PFHxA	16	17	1	106	50-150	01/20/2021 1207
PFNA	16	17	1	105	50-150	01/20/2021 1207
PFOA	16	17	1	107	50-150	01/20/2021 1207
PFTeDA PFTrDA	16 16	18 17	1 1	111 106	50-150 50-150	01/20/2021 1207 01/20/2021 1207
PFUdA	16	20	1 1	123	50-150	01/20/2021 1207
PFOS	15	14	1	97	50-150	01/20/2021 1207
F1 03	15		'	77	50-150	01/20/2021 1207
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	110	25-150				
13C2_PFTeDA	98	25-150				
13C3_PFBS	89	25-150				
13C3_PFHxS	76	25-150				
13C3-HFPO-DA	102	25-150				
13C4_PFHpA	101	25-150				
13C5_PFHxA	94	25-150				
13C6_PFDA	97	25-150				
13C7_PFUdA	90	25-150				
13C8_PFOA	92	25-150				
13C8_PFOS	104	25-150				
13C9_PFNA	84	25-150				
d5-EtFOSAA	86	25-150				
d3-MeFOSAA	100	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - MB

Sample ID: WQ80047-001 Batch: 80047 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE

Prep Date: 01/20/2021 1030

9CI-PF3ONS ND 1 8.0 2.0 ng/L 01/21/202 11CI-PF3OUdS ND 1 8.0 2.0 ng/L 01/21/202 GENX ND 1 8.0 2.0 ng/L 01/21/202 ADONA ND 1 8.0 2.0 ng/L 01/21/202 EIFOSAA ND 1 8.0 2.0 ng/L 01/21/202 EIFOSAA ND 1 8.0 2.0 ng/L 01/21/202 EIFOSAA ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 4.0 1.0 ng/L 01/21/202 PFBA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTBDA ND 1 4.0 1.0 ng/L 01/21/202 PFTUBA ND 1 4.0 1.0 ng/L 01/21/202	Date
GenX ND 1 8.0 2.0 ng/L 01/21/202 ADONA ND 1 8.0 2.0 ng/L 01/21/202 EIFOSAA ND 1 8.0 2.0 ng/L 01/21/202 MeFOSAA ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 4.0 1.0 ng/L 01/21/202 PFBA ND 1 4.0 1.0 ng/L 01/21/202 PFDAA ND 1 4.0 1.0 ng/L 01/21/202 PFDAA ND 1 4.0 1.0 ng/L 01/21/202 PFHAA ND 1 4.0 1.0 ng/L 01/21/202 PFNAA ND 1 4.0 1.0 ng/L 01/21/202 PFTEDA ND 1 4.0 1.0 ng/L 01/2	1 1355
ADONA ND 1 8.0 2.0 ng/L 01/21/202 E1FOSAA ND 1 8.0 2.0 ng/L 01/21/202 E1FOSAA ND 1 8.0 2.0 ng/L 01/21/202 MeFOSAA ND 1 4.0 1.0 ng/L 01/21/202 MeFBS ND 1 4.0 1.0 ng/L 01/21/202 MeFDA ND 1 4.0 1.0 ng/L 01/2	1 1355
EIFOSAA ND 1 8.0 2.0 ng/L 01/21/202 MeFOSAA ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 4.0 1.0 ng/L 01/21/202 PFBAS ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFHDA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFTDA ND 1 4.0 1.0 ng/L 01/21/202 PFTTDA ND 1 4.0 1.0 ng/L 01/21	1 1355
MeFOSAA ND 1 8.0 2.0 ng/L 01/21/202 PFBS ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDAA ND 1 4.0 1.0 ng/L 01/21/202 PFHAA ND 1 4.0 1.0 ng/L 01/21/202 PFHAA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFToA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/2	1 1355
PFBS ND 1 4.0 1.0 ng/L 01/21/202 PFHXS ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFHA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFTDA ND 1 4.0 1.0 ng/L 01/21/202 PFTEDA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202	1 1355
PFHXS ND 1 4.0 1.0 ng/L 01/21/202 PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDAA ND 1 4.0 1.0 ng/L 01/21/202 PFHAA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTEDA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 Surrogate 0 Rec Certaince 1 4.0 1	1 1355
PFDA ND 1 4.0 1.0 ng/L 01/21/202 PFDoA ND 1 4.0 1.0 ng/L 01/21/202 PFHpA ND 1 4.0 1.0 ng/L 01/21/202 PFHxA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFUGS ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate 0 Rec Acceptance 1.0 1.0	
PFDOA ND 1 4.0 1.0 ng/L 01/21/202 PFHPA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTEDA ND 1 4.0 1.0 ng/L 01/21/202 PFTTDA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 Surrogate 0 REC ND 2 1 4.0 <td></td>	
PFHPA ND 1 4.0 1.0 ng/L 01/21/202 PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTEDA ND 1 4.0 1.0 ng/L 01/21/202 PFTTDA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 PFUGA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance 1.0 ng/L 01/21/202 13C2_PFTEDA 110 25-150 13C3_PFTEDA 110 25-150 13C3_PFTEDA 120 25-150 13C3_PFTEDA 13 25	
PFHXA ND 1 4.0 1.0 ng/L 01/21/202 PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance Limit 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance Limit 1 4.0 1.0 ng/L 01/21/202 13C2_PFToA 110 25-150 1 25-150 1 1 1 1 1 1 1 1 1 1 1 1 1 <	
PFNA ND 1 4.0 1.0 ng/L 01/21/202 PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance Limit 1.0 ng/L 01/21/202 313C2_PFDOA 115 25-150 13C3_PFB 110 25-150 13C3_PFBS 110 25-150 13C3_PFB 13C3_PFB 118 25-150 13C4_PFHpA 113 25-150 13C4_PFB 113 25-150 13C5_PFHxA 112 25-150 13C4_PFB 15 15 13C6_PFDA 108 25-150 15 15 15	
PFOA ND 1 4.0 1.0 ng/L 01/21/202 PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q % Rec Acceptance Limit 1.0 ng/L 01/21/202 3C2_PFDoA 115 25-150 13C3_PFDoA 110 25-150 13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C4_PFHpA 113 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C4_PFHpA 108 25-150 13C6_PFDA 108 25-150 108 108 108 108	
PFTeDA ND 1 4.0 1.0 ng/L 01/21/202 PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance Limit 1.0 ng/L 01/21/202 13C2_PFDOA 115 25-150 13C3_PFBS 110 25-150 13C3_PFBS 118 25-150 13C3_PFHxS 118 25-150 13C4_PFHpA 113 25-150 13C4_PFHxA 112 25-150 13C6_PFDA 108 25-150 13C4_PFHxA 108 25-150	
PFTrDA ND 1 4.0 1.0 ng/L 01/21/202 PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q % Rec Acceptance Limit 1.0 ng/L 01/21/202 13C2_PFDOA 115 25-150 13C3_PFBS 110 25-150 13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C3_HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C4_PFDA 108 25-150	
PFUdA ND 1 4.0 1.0 ng/L 01/21/202 PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q Rec Acceptance Limit Limit 1.0 1.0 ng/L 01/21/202 0.0 13C2_PFDoA 115 25-150 1.0	
PFOS ND 1 4.0 1.0 ng/L 01/21/202 Surrogate Q % Rec Limit 13C2_PFDoA 115 25-150 13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C3_PFHxS 118 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
Surrogate Q % Rec Acceptance Limit 13C2_PFDoA 115 25-150 13C2_PFTeDA 110 25-150 13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C3-HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
25.150 13C2_PFTeDA 110 25.150 13C3_PFBS 110 25.150 13C3_PFHxS 118 25.150 13C3-HFPO-DA 120 25.150 13C4_PFHpA 113 25.150 13C5_PFHxA 112 25.150 13C6_PFDA 108 25.150	1 1333
13C2_PFTeDA 110 25-150 13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C3-HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C3_PFBS 110 25-150 13C3_PFHxS 118 25-150 13C3-HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C3_PFHxS 118 25-150 13C3-HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C3-HFPO-DA 120 25-150 13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C4_PFHpA 113 25-150 13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C5_PFHxA 112 25-150 13C6_PFDA 108 25-150	
13C6_PFDA 108 25-150	
13C7 PFUdA 116 25-150	
13C8_PFOA 116 25-150	
13C8_PFOS 100 25-150	
13C9_PFNA 105 25-150	
d5-EtFOSAA 107 25-150	
d3-MeFOSAA 106 25-150	

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - LCS

Sample ID: WQ80047-002 Batch: 80047 Analytical Method: PFAS by ID SOP

Matrix: Aqueous Prep Method: SOP SPE Prep Date: 01/20/2021 1030

	Spike				0.4 5	
Parameter	Amount (ng/L)	Result (ng/L) Q	! Dil	% Rec	% Rec Limit	Analysis Date
		_				
9CI-PF3ONS	15 15	16	1	107	50-150	01/21/2021 1406
11CI-PF3OUdS	15 32	15 33	1	100 105	50-150 50-150	01/21/2021 1406
GenX ADONA	32 15	33 17	1 1	114		01/21/2021 1406
EtFOSAA	16	19	1 1	114	50-150 50-150	01/21/2021 1406 01/21/2021 1406
MeFOSAA	16	16	1	102	50-150	01/21/2021 1406
PFBS	14	15	1	102	50-150	01/21/2021 1406
PFHxS	15	16	1	113	50-150	01/21/2021 1406
PFDA	16	17	1	108	50-150	01/21/2021 1406
PFDoA	16	17	1	109	50-150	01/21/2021 1406
PFHpA	16	18	1	113	50-150	01/21/2021 1406
PFHxA	16	17	1	103	50-150	01/21/2021 1406
PFNA	16	19	1	119	50-150	01/21/2021 1406
PFOA	16	17	1	108	50-150	01/21/2021 1406
PFTeDA	16	18	1	115	50-150	01/21/2021 1406
PFTrDA	16	18	1	110	50-150	01/21/2021 1406
PFUdA	16	18	1	113	50-150	01/21/2021 1406
PFOS	15	16	1	111	50-150	01/21/2021 1406
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	101	25-150				
13C2_PFTeDA	100	25-150				
13C3_PFBS	104	25-150				
13C3_PFHxS	105	25-150				
13C3-HFPO-DA	106	25-150				
13C4_PFHpA	103	25-150				
13C5_PFHxA	104	25-150				
13C6_PFDA	100	25-150				
13C7_PFUdA	99	25-150				
13C8_PFOA	109	25-150				
13C8_PFOS	103	25-150				
13C9_PFNA	97	25-150				
d5-EtFOSAA	100	25-150				
d3-MeFOSAA	99	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria + = RPD is out of criteria

PFAS by LC/MS/MS - MS

Sample ID: WA16018-016MS Batch: 80047 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/20/2021 1030

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
9CI-PF3ONS	ND ND	16	17		1	104	50-150	01/21/2021 1739
11Cl-PF3OUdS	ND	16	16		1	100	50-150	01/21/2021 1739
GenX	ND	34	34		1	98	50-150	01/21/2021 1739
ADONA	ND	16	18		1	109	50-150	01/21/2021 1739
EtFOSAA	ND	17	17		1	101	50-150	01/21/2021 1739
MeFOSAA	ND	17	19		1	108	50-150	01/21/2021 1739
PFBS	ND	15	15		1	98	50-150	01/21/2021 1739
PFHxS	1.8	16	18		1	106	50-150	01/21/2021 1739
PFDA	ND	17	17		1	101	50-150	01/21/2021 1739
PFDoA	ND	17	17		1	101	50-150	01/21/2021 1739
PFHpA	ND	17	17		1	101	50-150	01/21/2021 1739
PFHxA	ND	17	19		1	108	50-150	01/21/2021 1739
PFNA	ND	17	18		1	102	50-150	01/21/2021 1739
PFOA	ND	17	18		1	104	50-150	01/21/2021 1739
PFTeDA	ND	17	17		1	99	50-150	01/21/2021 1739
PFTrDA	ND	17	18		1	102	50-150	01/21/2021 1739
PFUdA	ND	17	18		1	103	50-150	01/21/2021 1739
PFOS	ND	16	19		1	117	50-150	01/21/2021 1739
Surrogate	Q % Re		ptance mit					
13C2_PFDoA	92	25	5-150					
13C2_PFTeDA	93	25	5-150					
13C3_PFBS	94	25	5-150					
13C3_PFHxS	95	25	5-150					
13C3-HFPO-DA	102	25	5-150					
13C4_PFHpA	97	25	5-150					
13C5_PFHxA	93	25	5-150					
13C6_PFDA	92	25	5-150					
13C7_PFUdA	91	25	5-150					
13C8_PFOA	102	25	5-150					
13C8_PFOS	89	25	5-150					
13C9_PFNA	89	25	5-150					
d5-EtFOSAA	87	25	5-150					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

d3-MeFOSAA

J = Estimated result < LOQ and ≥ DL

25-150

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

90

PFAS by LC/MS/MS - MSD

Sample ID: WA16018-016MD Batch: 80047 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/20/2021 1030

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
9CI-PF3ONS	ND	15	14		1	99	15	50-150	30	01/21/2021 1749
11CI-PF3OUdS	ND	15	15		1	101	8.3	50-150	30	01/21/2021 1749
GenX	ND	31	30		1	96	12	50-150	30	01/21/2021 1749
ADONA	ND	15	17		1	115	5.1	50-150	30	01/21/2021 1749
EtFOSAA	ND	16	15		1	96	16	50-150	30	01/21/2021 1749
MeFOSAA	ND	16	15		1	94	24	50-150	30	01/21/2021 1749
PFBS	ND	14	14		1	105	2.9	50-150	30	01/21/2021 1749
PFHxS	1.8	14	18		1	113	3.8	50-150	30	01/21/2021 1749
PFDA	ND	16	16		1	99	11	50-150	30	01/21/2021 1749
PFDoA	ND	16	15		1	99	12	50-150	30	01/21/2021 1749
PFHpA	ND	16	17		1	110	1.8	50-150	30	01/21/2021 1749
PFHxA	ND	16	16		1	103	14	50-150	30	01/21/2021 1749
PFNA	ND	16	16		1	103	9.0	50-150	30	01/21/2021 1749
PFOA	ND	16	16		1	105	8.5	50-150	30	01/21/2021 1749
PFTeDA	ND	16	16		1	103	6.5	50-150	30	01/21/2021 1749
PFTrDA	ND	16	15		1	99	13	50-150	30	01/21/2021 1749
PFUdA	ND	16	15 15		1	99	14	50-150	30	01/21/2021 1749
PFOS	ND	15			1	104	21	50-150	30	01/21/2021 1749
Surrogate	Q % Red	Acce L	eptance imit							
13C2_PFDoA	93	2	5-150							
13C2_PFTeDA	93	2	5-150							
13C3_PFBS	97	2	5-150							
13C3_PFHxS	92	2	5-150							
13C3-HFPO-DA	106	2	5-150							
13C4_PFHpA	97	2	5-150							
13C5_PFHxA	102	2	5-150							
13C6_PFDA	100	2	5-150							
13C7_PFUdA	99	2	5-150							
13C8_PFOA	103	2	5-150							
13C8_PFOS	93	2	5-150							
13C9_PFNA	97	2	5-150							
d5-EtFOSAA	89	2	5-150							
d3-MeFOSAA	98	2	5-150							

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - MB

Sample ID: WQ80099-001 Batch: 80099 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE

Prep Date: 01/20/2021 1356

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
9CI-PF3ONS	ND	1	8.0	2.0	ng/L	01/21/2021 1417
11CI-PF3OUdS	ND	1	8.0	2.0	ng/L	01/21/2021 1417
GenX	ND	1	8.0	2.0	ng/L	01/21/2021 1417
ADONA	ND	1	8.0	2.0	ng/L	01/21/2021 1417
EtFOSAA	ND	1	8.0	2.0	ng/L	01/21/2021 1417
MeFOSAA	ND	1	8.0	2.0	ng/L	01/21/2021 1417
PFBS	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFHxS	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFDA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFDoA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFHpA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFHxA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFNA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFOA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFTeDA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFTrDA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFUdA	ND	1	4.0	1.0	ng/L	01/21/2021 1417
PFOS	ND	1	4.0	1.0	ng/L	01/21/2021 1417
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	103	25-150				
13C2_PFTeDA	100	25-150				
13C3_PFBS	103	25-150				
13C3_PFHxS	102	25-150				
13C3-HFPO-DA	113	25-150				
13C4_PFHpA	106	25-150				
13C5_PFHxA	107	25-150				
13C6_PFDA	103	25-150				
13C7_PFUdA	105	25-150				
13C8_PFOA	116	25-150				
13C8_PFOS	89	25-150				
13C9_PFNA	103	25-150				
d5-EtFOSAA	96	25-150				
d3-MeFOSAA	98	25-150				
	, 0					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - LCS

Sample ID: WQ80099-002 Batch: 80099 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/20/2021 1356

	Spike					
5	Amount	Result		0/ 5	% Rec	
Parameter	(ng/L)	(ng/L) Q		% Rec	Limit	Analysis Date
9CI-PF3ONS	15	15	1	102	50-150	01/21/2021 1427
11CI-PF3OUdS	15	15	1	101	50-150	01/21/2021 1427
GenX	32	32	1	101	50-150	01/21/2021 1427
ADONA	15	19	1	129	50-150	01/21/2021 1427
EtFOSAA	16	17	1	107	50-150	01/21/2021 1427
MeFOSAA	16	18	1	109	50-150	01/21/2021 1427
PFBS	14	15	1	104	50-150	01/21/2021 1427
PFHxS	15	16	1	110	50-150	01/21/2021 1427
PFDA	16	17	1	106	50-150	01/21/2021 1427
PFDoA	16	17	1	105	50-150	01/21/2021 1427
PFHpA	16	17	1	107	50-150	01/21/2021 1427
PFHxA	16	16	1	101	50-150	01/21/2021 1427
PFNA	16	17	1	105	50-150	01/21/2021 1427
PFOA	16	19	1	117	50-150	01/21/2021 1427
PFTeDA	16	17	1	107	50-150	01/21/2021 1427
PFTrDA	16	17	1	106	50-150	01/21/2021 1427
PFUdA	16	18	1	115	50-150	01/21/2021 1427
PFOS	15	16	1	106	50-150	01/21/2021 1427
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	86	25-150				
13C2_PFTeDA	87	25-150				
13C3_PFBS	90	25-150				
13C3_PFHxS	88	25-150				
13C3-HFPO-DA	101	25-150				
13C4_PFHpA	98	25-150				
13C5_PFHxA	96	25-150				
13C6_PFDA	90	25-150				
13C7_PFUdA	84	25-150				
13C8_PFOA	94	25-150				
13C8_PFOS	76	25-150				
13C9_PFNA	88	25-150				
d5-EtFOSAA	78	25-150				
d3-MeFOSAA	84	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - MS

Sample ID: WA16018-006MS Batch: 80099 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/20/2021 1356

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% Rec Limit	Analysis Date
9CI-PF3ONS	ND	15	15		1	102	50-150	01/21/2021 1531
11CI-PF3OUdS	ND	15	14		1	91	50-150	01/21/2021 1531
GenX	ND	32	32		1	100	50-150	01/21/2021 1531
ADONA	ND	15	18		1	120	50-150	01/21/2021 1531
EtFOSAA	ND	16	16		1	102	50-150	01/21/2021 1531
MeFOSAA	ND	16	17		1	106	50-150	01/21/2021 1531
PFBS	3.5	14	17		1	97	50-150	01/21/2021 1531
PFHxS	15	15	29		1	95	50-150	01/21/2021 1531
PFDA	ND	16	16		1	99	50-150	01/21/2021 1531
PFDoA	ND	16	16		1	103	50-150	01/21/2021 1531
PFHpA	1.2	16	18		1	102	50-150	01/21/2021 1531
PFHxA	1.5	16	17		1	98	50-150	01/21/2021 1531
PFNA	ND	16	16		1	100	50-150	01/21/2021 1531
PFOA	2.6	16	17		1	93	50-150	01/21/2021 1531
PFTeDA	ND	16	16 15		1	98	50-150	01/21/2021 1531
PFTrDA	ND	16	15 14		1	92	50-150	01/21/2021 1531
PFUdA PFOS	ND 14	16 15	16 27		1 1	99 91	50-150 50-150	01/21/2021 1531 01/21/2021 1531
		Acc	eptance		ı	91	50-150	01/21/2021 1551
Surrogate	Q % Re	C [_imit					
13C2_PFDoA	96	2	25-150					
13C2_PFTeDA	75	2	25-150					
13C3_PFBS	107	2	25-150					
13C3_PFHxS	98	2	25-150					
13C3-HFPO-DA	109	2	25-150					
13C4_PFHpA	107	2	25-150					
13C5_PFHxA	108	2	25-150					
13C6_PFDA	99	2	25-150					
13C7_PFUdA	97	2	25-150					
13C8_PFOA	110	2	25-150					
13C8_PFOS	93	2	25-150					
13C9_PFNA	101	2	25-150					
d5-EtFOSAA	87	2	25-150					
d3-MeFOSAA	93	2	25-150					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and \geq DL P = The RPD between two GC columns exceeds 40%

+ = RPD is out of criteria

^{* =} RSD is out of criteria

PFAS by LC/MS/MS - MSD

Sample ID: WA16018-006MD Batch: 80099 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/20/2021 1356

Parameter	Sample Amount (ng/L)	Spike Amount (ng/L)	Result (ng/L)	Q	Dil	% Rec	% RPD	% Rec Limit	% RPD Limit	Analysis Date
9CI-PF3ONS	ND	14	13		1	88	19	50-150	30	01/21/2021 1542
11CI-PF3OUdS	ND	14	12		1	86	10	50-150	30	01/21/2021 1542
GenX	ND	31	31		1	102	2.3	50-150	30	01/21/2021 1542
ADONA	ND	14	16		1	108	15	50-150	30	01/21/2021 1542
EtFOSAA	ND	15	15		1	95	12	50-150	30	01/21/2021 1542
MeFOSAA	ND	15	16		1	107	3.6	50-150	30	01/21/2021 1542
PFBS	3.5	14	16		1	90	9.3	50-150	30	01/21/2021 1542
PFHxS	15	14	27		1	87	6.4	50-150	30	01/21/2021 1542
PFDA	ND	15	14		1	91	13	50-150	30	01/21/2021 1542
PFDoA	ND	15	15		1	100	7.0	50-150	30	01/21/2021 1542
PFHpA	1.2	15	16		1	99	6.9	50-150	30	01/21/2021 1542
PFHxA	1.5	15	16		1	96	6.3	50-150	30	01/21/2021 1542
PFNA	ND	15	15		1	98	7.1	50-150	30	01/21/2021 1542
PFOA	2.6	15	17		1	94	2.1	50-150	30	01/21/2021 1542
PFTeDA	ND	15	15		1	101	1.3	50-150	30	01/21/2021 1542
PFTrDA	ND	15	14		1	88	8.7	50-150	30	01/21/2021 1542
PFUdA	ND	15	15		1	101	2.3	50-150	30	01/21/2021 1542
PFOS	14	14	27		1	92	1.4	50-150	30	01/21/2021 1542
Surrogate	Q % Rec	Acce L	ptance imit							
13C2_PFDoA	93	25	5-150							
13C2_PFTeDA	70	25	5-150							
13C3_PFBS	103	25	5-150							
13C3_PFHxS	102	25	5-150							
13C3-HFPO-DA	104	25	5-150							
13C4_PFHpA	101	25	5-150							
13C5_PFHxA	100	25	5-150							
13C6_PFDA	97	25	5-150							
13C7_PFUdA	90	25	5-150							
13C8_PFOA	108	25	5-150							
13C8_PFOS	95	25	5-150							
13C9_PFNA	92	25	5-150							
d5-EtFOSAA	79	25	5-150							
d3-MeFOSAA	89	25	5-150							

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - MB

Sample ID: WQ80206-001 Batch: 80206 Analytical Method: PFAS by ID SOP Matrix: Aqueous Prep Method: SOP SPE

Prep Date: 01/21/2021 1050

Parameter	Result	Q Dil	LOQ	DL	Units	Analysis Date
9CI-PF3ONS	ND	1	8.0	2.0	ng/L	01/25/2021 2001
11CI-PF3OUdS	ND	1	8.0	2.0	ng/L	01/25/2021 2001
GenX	ND	1	8.0	2.0	ng/L	01/25/2021 2001
ADONA	ND	1	8.0	2.0	ng/L	01/25/2021 2001
EtFOSAA	ND	1	8.0	2.0	ng/L	01/25/2021 2001
MeFOSAA	ND	1	8.0	2.0	ng/L	01/25/2021 2001
PFBS	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFHxS	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFDA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFDoA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFHpA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFHxA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFNA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFOA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFTeDA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFTrDA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFUdA	ND	1	4.0	1.0	ng/L	01/25/2021 2001
PFOS	ND	1	4.0	1.0	ng/L	01/25/2021 2001
Surrogate	Q % Rec	Acceptance Limit				
13C2_PFDoA	115	25-150				
13C2_PFTeDA	104	25-150				
13C3_PFBS	104	25-150				
13C3_PFHxS	111	25-150				
13C3-HFPO-DA	111	25-150				
13C4_PFHpA	106	25-150				
13C5_PFHxA	109	25-150				
13C6_PFDA	106	25-150				
13C7_PFUdA	102	25-150				
13C8_PFOA	109	25-150				
13C8_PFOS	109	25-150				
13C9_PFNA	107	25-150				
d5-EtFOSAA	109	25-150				
d3-MeFOSAA	110	25-150				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

PFAS by LC/MS/MS - LCS

Sample ID: WQ80206-002 Batch: 80206 Analytical Method: PFAS by ID SOP Matrix: Aqueous
Prep Method: SOP SPE
Prep Date: 01/21/2021 1050

	Spike						
	Amount	Result	_			% Rec	
Parameter	(ng/L)	(ng/L)	Q	Dil	% Rec	Limit	Analysis Date
9CI-PF3ONS	15	15		1	100	50-150	01/25/2021 2012
11CI-PF3OUdS	15	15		1	101	50-150	01/25/2021 2012
GenX	32	32		1	100	50-150	01/25/2021 2012
ADONA	15	17		1	115	50-150	01/25/2021 2012
EtFOSAA	16	17		1	107	50-150	01/25/2021 2012
MeFOSAA	16	18		1	110	50-150	01/25/2021 2012
PFBS	14	14		1	101	50-150	01/25/2021 2012
PFHxS	15	17		1	113	50-150	01/25/2021 2012
PFDA	16	16		1	98	50-150	01/25/2021 2012
PFDoA	16	17		1	106	50-150	01/25/2021 2012
PFHpA	16	17		1	105	50-150	01/25/2021 2012
PFHxA	16	17		1	104	50-150	01/25/2021 2012
PFNA	16	16		1	101	50-150	01/25/2021 2012
PFOA	16	16		1	103	50-150	01/25/2021 2012
PFTeDA	16	17		1	106	50-150	01/25/2021 2012
PFTrDA	16	17		1	108	50-150	01/25/2021 2012
PFUdA	16	19		1	117	50-150	01/25/2021 2012
PFOS	15	15		1	100	50-150	01/25/2021 2012
Surrogate	Q % Rec	Acceptano Limit	ce				
13C2_PFDoA	111	25-150					
13C2_PFTeDA	100	25-150					
13C3_PFBS	108	25-150					
13C3_PFHxS	103	25-150					
13C3-HFPO-DA	108	25-150					
13C4_PFHpA	108	25-150					
13C5_PFHxA	106	25-150					
13C6_PFDA	105	25-150					
13C7_PFUdA	98	25-150					
13C8_PFOA	108	25-150					
13C8_PFOS	108	25-150					
13C9_PFNA	107	25-150					
d5-EtFOSAA	105	25-150					
d3-MeFOSAA	109	25-150					

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Limit

J = Estimated result < LOQ and ≥ DL

P = The RPD between two GC columns exceeds 40%

* = RSD is out of criteria

+ = RPD is out of criteria

Chain of Custody and Miscellaneous Documents

Description	Descriptions Lucis S Lucis S	Description	Pace Analytical "	PACE ANALY- 108 Vantage Point Dr Telephone No. 803-73 www.	PACE ANALYTICAL SERVICES, LLC 108 Vantage Point Drive - West Columbia, SC 29172 Telephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com	LLC 2 29172 91-9111 Telephone No. / E-mail	Number	114492
2	Purcas P	March Marc		- 1	witers	richard, closenors &	9241Cin	24244
2				ampiars squarement	hans	Analysis (Attach fist if more space is nee	(pep)	
Metalox Meta		1 1 1 1 1 1 1 1 1 1			Lucas			WAY 6010
	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2	1 2	, co	No of Contringes by Presorvative Type			O O O O O O
	2	2	1 8	Mess Mess Mess Mess Mess Mess Mess Mess	110911 110911 11091 1109 1109 1109 1109	131		Herranks / Coorer L.L.
X 2 X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	1 5 1	X-9	2	×		L 7
X 2	2 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	~ ~	(- x	\ \ \	×		
X 2 X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X				1		
X 2	2 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	_	. ×				Total Control of the
X Z X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X		.х Ь		×		
X	2 X X X X X X X X X	2 X X X X X X X X X X X X X X X X X X X	1.673.1	У. Э	-Ch	; —		
X 2 X X X X X X X X	2. X X X X X X X X X	2 X X X X X X X X X		<u>-</u>		×		
X 2 X X X X X X X X	2. Received by TCA C C Received by TCA C C Received by TCA C C Received on the Chair Yes No los Pact Received on the Chair Yes No los Pact Received on the Chair Yes No los Pact Received Tong 3.0	Possible Hazard Identification Possible Hazard Identification The Single		G X		×		Š
Natural by Lab State Hazard Westiffmakin Natural Polison Unaturen Ochequirements (Specify) Natural Polison Unaturen Ochequirements (Specify) Natural Polison Unaturen Ochequirements (Specify) Natural Polison Oche Oche Natural Polison Oche Och	Possible Hazard Marufilmusiyn The Siver by Lab Erbannade Champade Champade 1. Received by Lab Champade Champade 2. Received by Laboral processing of the Champade	Cost by Lab Broad the Harder Desire Harder Desire Costs of Desired by Lab Broad by Lab Desired b	- 1	GX	7	×		
Possible Hazard therutification OC Requirements (Specify) Puth	Possible Hazard Martification Tuth 1. Received by Tuth 2. Received by 4. Letterational By A. Letterational By	Possible Hazard Manufachian Tuth 1. Received by Possible Dane 2. Received by 4. Lateralized Dane 5. Received on the (Order Vee) 1. Received Dane 1. Received Dan	100	×		×		
15.24 Time 1. Received by FLLAC C. Time 2. Received by FLLAC C. Time 2. Received by FLLAC C. Time 3. Received by FLLAC C. Time 3. Received by FLLAC C. Time 3. Received by FLLAC C. Time 5. Received by FLLAC C.	1. Received by FECLE (2) 2. Received by A. Letocrately Schoolings Over College (2) 4. Letocrately Schoolings Over College (3) LAB USE ONLY (2) Figure Very	1. Received by FLLA C. A. A. Control of the Control	10 PE	ua Diaposal Vina to Dilaposal by Lab	Possible Hazand Identification Possible Hazand D Flammable	O Skin Irritani - 12 Polson	OC Requirement	(Speoffy)
Time 2. Received by Time 2. Received by Time Time Bells Time Bells Time Bells Time Bells Time Bells Time Time Bells Time Time Bells Time Bells Time Bells Time Time Time Time Time Time Time Time	2. Received by 3. Received by 4. Lationally Machine Order A. Lationally Machine Order A. Lational Order A	4. Latitude by Latitude Date Latitude Only Received on the (Dinairy Year) No. los Pack Received on the (Dinairy Year) No. los Pack Received on the (Dinairy Year) No. los Pack		5.24	1. Received by FQCA	67		815
Timo 3. Received by Timo 3. Received by Timo 3. Receipt Timo 3. C. C. Temp Stenk D.Y. Receipt Theory Sect. Receipt Temp 3. C. C. Temp Stenk D.Y.	4. Lational any Seculars of Challe 2000 Pact Received on Ize (Order) Yes No los Pact Received Temp. 3.0	4. Lational processing of the Lational Processing Control of Proce		43.71	2. Received by			314
receipt 1983 4. Latoranian Security Secretion On the Pack 198 3 From Bienk 198 198 198 198 198 198 198 198 198 198	4. Lational any Accelulation Of Action 100 Pacts Received on the (Divine) Year, No. 100 Pacts Received Temp. 3.0	A Latinoral any Manufactures of the Chair Sect Necessal Tempo 3.0	 -		2. Received by:			
receipt LAB USE ONLY / / / / / / / / / / / / / / / / / / /	Received on the Chrise Year, No. Ion Pacit. Received Transp. 3.0	Received on the (Christer) New Nos Pact Received Tenny 3.0	1	न	4. Lational programme our	Tast.	-	PO 20.
			1 1/4 0	receipt	LAB USE ONLY Received on the (Chale) Ye	Mo ios Pacit	9	<u>ئ</u>

Occurrent Number: ME009N2-01

DISTRIBUTION: WHITE & YELLOW-Return to laboratory with Sample(s); PLINK-FlatMiction! Copy

Numbie, 50 29172 St. No. 808-791-9111 om	Telephone No. / Email and State (C. 9 24 CC 1)	Page		do	W-5	Homans / Croter 1.D.	X Smethod 571.1 12 to	Ĺ.	×	×	×	XX	×	×	X	×	of identification Of Requirements (Social) District C Datasets C Datasets	FEDEX	Date Tens	Date Thosa	26 Ogni 16 13 1 Jahr	01010
TACE AWALT INCAL SERVICES, LLC 106 Variage Point Drive - West Columbia, SC 25172 Talephone No. 803-791-9700 Fax No. 803-791-9111 www.pacelabs.com	ratage Descosiers	Y . Y			Adalrik Ay Preservative Type	CHI ECHAN FORMI TORRIN TORRI TO	7 × 5	5 × 2	ر 2 2	6/X 2	2 X - 9	Ž Ž	6x 2	2) 2)	GK 2	G× 1 2 × 2	Sample Disposal Possylve Hazard identification Ratury to Client Adisposal by Lab Whon-Hazard Blummabe	Tune 1. Reserved by		Time & Received by	Time of A Leboratory recommend	٦.
T06 Vr Telept	inter Richard Contact	1 Play	8033 Printed y	fcs	P.O. No.	Collection Callection Time Catalast (MMRay)	1.8.4	1-13-21 1500	1.13.2/ 1530 6	144.21 840 (14421 1050	1210	1.144 1100 c	1.14.4 1310 6	1.14.2 1440 6	nut for exmedited TAT.) Sample Disposa	1.15.2	Dake	Date	X (#16)31	Alcelon All comments
/ Pace Analytical"	Clien 62A Ger Environmental	y Blud	Starge CT	Town of Canter	Profession 05,0046589.02	Sample 10 / Description (Contribus for each sample may be combined on one the.)	DUP-	92-29	EB-011321	C3-4 I	65-40	11-29	(-2-11)	FB-011421	62 8	1875	Tury Around Time Required (Pitat lab approver required for expedited TRL) Sample Disposal Vistoridand C. Rush (Specify)	1. Ratinguished by \mathcal{C}	2. Reforquished by	3. Holimpiratest by	4. Palinquished by	Motor All assessing and

Sample Receipt Checklist (SRC) Cooler Inspected by/date: (15.5) Lot 1 nets Means of receipt: Pace Client UPS Fedex Other:	e Analyticai"	Securing Authority: Page ENN - WCOI	/2020 1 of 1
Color Inspected by/date: Color State Color Col		\Λ/Δ16018	
Means of roceipt: Pacc Chient UPS FedEx Other: Yes No 1. Were custody seals present on the cooler? Yes No NA 2. If custody seals were present, were they intact and unbroken? H Strip ID:	Q.ZA		
Yes No 1. Were custody seals present on the cooler? Yes No RA 2. If custody seals were present, were they infact and unbroken? H Strip ID	lieut: TT		
Yes No NA 2. If custody seals were present, were they intact and unbroken?	Means of receipt;	Pace Client UPS FedEx Other:	
H Strip ID:	Yes No		
Asolid Snap-Cup ID: V	Yes No		
Method: Temperature Blank Against Bottles Ri Gun Dry Lee None Method of coolant: Wet Itee Too Peaks Dry Lee None None Method of coolant: Wet Itee Too Peaks Dry Lee None None Method of coolant: Method			
Method: Temperature Blank Against Bottles IR Gum ID:	Priginal temperature えん パんつで バ	LINERO MANO O MANOLEO	
Yes		ature Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: °C	
Yes No No NA A Is the commercial courier's packing slip attached to this form?	Method of coolant:		
Yes	¬v ₂₀ □v ₂ □	3: If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?	
Yes No S. Were proper custody procedures (relinquished/received) followed? Yes No 6. Were sample IDs listed on the COC? Yes No 7. Were sample IDs listed on all sample containers? Yes No 8. Was collection date & time listed on all sample containers? Yes No 9. Was collection date & time listed on all sample containers? Yes No 10. Did all container label information (ID, date, time) agree with the COC? Yes No 11. Were tests to be performed listed on the COC? Yes No 11. Were tests to be performed listed on the COC? Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)? Yes No 13. Was adequare sample volume available? Yes No 14. Were all samples received within ½ the holding time or 48 hours, whichever comes first? Yes No NA Neer any samples containers missing/excess (eircle one) samples Not listed on COC? If. For VOA and RSK-175 samples, were bubbles present > pea-size* (///or 6tum in diameter) in any of the VOA vials? Yes No NA N. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA N. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA N. Were all papiciable NHy/TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc correctly transcribed from the COC into the comment section in LIMS? 21. Was the quote number listed on the container label? If yes, Quote # Q Q Q Yes No Yes No Yes No Yes No Yes No Yes No Yes Yes No Yes Yes No Yes Y	YesNo &	PM was Notified by: phone / email / face-to-face (circle one).	
Yes	Yes No	NA 4. Is the commercial courier's packing slip attached to this form?	
No	Yes No	Were proper custody procedures (relinquished/received) followed?	
Yes	Yes No	6. Were sample IDs listed on the COC?	
Yes No 9. Was collection date & time listed on all sample containers? Yes No 10. Did all container label information (ID, date, time) agree with the COC? Yes No 11. Were tests to be performed listed on the COC? Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)? Yes No 13. Was adequate sample volume available?		Were sample IDs listed on all sample containers?	
Yes No 10. Did all container label information (ID, date, time) agree with the COC? Yes No 11. Were tests to be performed listed on the COC?	✓ Yes □ No	8. Was collection date & time listed on the COC?	
Yes No 10. Did all container label information (ID, date, time) agree with the COC? Yes No 11. Were tests to be performed listed on the COC? 12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)? 13. Was adequate sample volume available? 14. Were all samples received within ½ the holding time or 48 hours, whichever comes first? 15. Were any samples containers missing/excess (circle one) samples Not listed on COC? 16. For VOA and RSK-175 samples, were bubbles present > "pea-size" (W" or 6mm in diameter) in any of the VOA vials? 18. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2? 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 24.204 Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample Preservation 17.		Was collection date & time listed on all sample containers?	
Yes No 11. Were tests to be performed listed on the COC?	/ 		
12. Did all samples arrive in the proper containers for each test and/or in good condition (unbroken, lids on, etc.)? Yes	-	The state of the s	
Yes No 13. Was adequate sample volume available? Yes No			
Yes No			
Yes No 15. Were any samples containers missing/excess (circle one) samples Not listed on COC? Yes No NA 16. For VOA and RSK-175 samples, were bubbles present > "pea-size" (//" or 6mm in diameter) in any of the VOA vials? Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? Yes No NA 18. Were all applicable NHy/TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? Yes No NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 24.2 C.) Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample (s) were received incorrectly preserved and were adjusted accordingly in sample receiving with ML of circle one: H2SO4, HNO3, HCl, NaOH using SR # MC Market			
Yes No NA 16. For VOA and RSK-175 samples, were bubbles present > "pea-size" (%" or 6mm in diameter) in any of the VOA vials? Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? 19. Were all applicable NHy/TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? Yes No NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 2 4 2 0 4 . Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with Ma of circle one: H2SO4, HNO3, HCl, NaOH using SR # Completed in the comments below. Sample(s) No Na Office one: H2SO4, HNO3, HCl, NaOH using SR # Completed in the comments below. Sample(s) Were received with bubbles > 6 mm in dianeter. Samples(s) were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 16 D. SR barcode labels applied by: Date: 1 16 D.			
Yes No NA in any of the VOA vials? Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? Yes No NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 2 4 2 4 4 5 4 5 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6	Yes Mo		
Yes No NA 17. Were all DRO/metals/nutrient samples received at a pH of < 2? Yes No NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? Yes No NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 2 2 2 3 3 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	□ Yesl □ Nol F		
Yes No No NA 18. Were all cyanide samples received at a pH > 12 and sulfide samples received at a pH > 9? 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # 24.20.4 . Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with M of circle one: H2SO4, HNO3, HCl, NaOH using SR # Time of preservation If more than one preservative is needed, please note in the comments below. Sample(s) NC were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 14 Q . SR barcode labels applied by: Date: 1 14 Q .			,
Yes No NA 19. Were all applicable NH ₃ /TKN/cyanide/phenol/625.1/608.3 (< 0.5mg/L) samples free of residual chlorine? Yes No NA 20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc) correctly transcribed from the COC into the comment section in LIMS? Yes No 21. Was the quote number listed on the container label? If yes, Quote # Q Q Q Q Q Q Q Q Q			
Yes No Analysis residual chlorine? Yes No Analysis residual chlorine. Yes No Analysis residual chlor	Tes No I	10. Were all explicable NH /UKN/reanide/phecol/625 1/608 3 (< 0.5mg/l) samples free of	:
Yes	Yes No [INTA I	
Yes No 21. Was the quote number listed on the container label? If yes, Quote # 2 9 0 0 Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample Preservation (Must be completed for any sample(s) incorrectly preserved and were adjusted accordingly in sample receiving with	- - -	20 Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc.)	
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample Preservation (Must be completed for any sample(s) incorrectly preserved and were adjusted accordingly in sample receiving with	☐ Yes]. ☐ No [
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.) Sample(s)			
Sample(s) were received incorrectly preserved and were adjusted accordingly in sample receiving with mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # Time of preservation If more than one preservative is needed, please note in the comments below. Sample(s) were received with bubbles >6 mm in diameter. Samples(s) were received with TRC > 0.5 mg/L (If #J9 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 1		and the second s	
If more than one preservative is needed, please note in the comments below. Sample(s)	Sample Preservati		
Sample(s) NC were received with bubbles >6 mm in diameter. Samples(s) NC were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: NTS Date: 1 16 2		were received incorrectly preserved and were adjusted accordingly	
Sample(s) NC were received with bubbles >6 mm in diameter. Samples(s) NC were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: NBS Date: 1 16 2		with No. mL of circle one: H2SO4, HNO3, HCl, NaOH using SR # Y'C.	
Samples(s) were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 16 2	Time of preservation	n V C If more than one preservative is needed, please note in the comments below.	
Samples(s) were received with TRC > 0.5 mg/L (If #19 is no) and were adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 16 2	Sample(s)	OCo were received with bubbles >6 mm in diameter.	
adjusted accordingly in sample receiving with sodium thiosulfate (Na ₂ S ₂ O ₃) with Shealy ID: SR barcode labels applied by: Date: 1 16 2		- Lander - Control - Contr	
SR barcode labels applied by:	Samples(s)	were received with TRC > 0.5 mg/L (If 7.19 is no) and were	
	adjusted according		
	SR harcode labels a	onlied by: MTSS Date: 1 16/24	
Comments:	or our code mireta		ı
	Comments:		
. * ' *			

GZA GeoEnvironmental, Inc.