

95 Glastonbury Boulevard 3rd Floor Glastonbury, CT 06033 T: 860.286.8900 F: 860.633.5699

October 23, 2020 Project Number 05.0046589.01

Mr. Robert H. Skinner Chief Administrative Officer Canton Town Hall P.O. Box 168 4 Market Street Collinsville, CT 06019

Attn: Mr. Robert H. Skinner

Re: Soil and Groundwater Investigation
Historical AFFF Discharge at Cherry Brook Primary School
4 Barbourtown Road, Canton, Connecticut

Dear Mr. Skinner:

GZA GeoEnvironmental, Inc. (GZA) is pleased to provide this letter report to the Town of Canton, presenting subsurface investigation data related to historic releases of fire training Aqueous Film Forming Foam (AFFF) containing Per- and Polyfluorinated Alkyl Substances (PFAS), at the Cherry Brook Primary School located at 4 Barbourtown Road in Canton, CT. These subsurface investigations were completed in accordance with our contract, dated November 25, 2019 and our subsequent Change Order #1, dated June 8, 2020. The location of the Site is shown on Figure 1. The conclusions of this letter report are subject to the Limitations included as Appendix A.

Background

Historic fire training drills, using AFFF fire-fighting foams, were performed at two locations on the grounds of the Cherry Brook Primary School. These locations include: 1) the grassy field area between the school's parking lot and Barbourtown Road (referred to as the "Eastern Field"); and 2) a grassy field south of the school building and north of a playscape (referred to as the "Southern Field").

Because of the historic application of these fire-fighting foams, the Connecticut Department of Energy and Environmental Protection (CTDEEP) and the Connecticut Department of Public Health (DPH) requested that the Town of Canton investigate adjacent private potable water supplies (including the school's wells) and evaluate potential soil and groundwater impacts to the environment where these foams were discharged.

This letter provides a summary of the environmental findings to date. A more comprehensive site characterization report will be provided following further site characterization, as requested by the CTDEEP.

Executive Summary

These investigations indicated that the application of the firefighting foams resulted in the following findings:

• All private potable water supply wells sampled reported concentrations below the DPH drinking water action levels.

- Shallow (surface) and deep soil samples collected reported concentrations below DEEP's direct exposure/contact criteria.
- Shallow and deep soil samples reported concentrations greater than the DEEP's pollutant mobility leaching criteria indicating the soil's potential to impact groundwater.
- Groundwater data identified concentrations greater than the DEEP's groundwater protection criteria.

Based upon these findings, additional soil and groundwater investigation will be required by the DEEP to define the nature and extent of the PFAS contamination. Those soils identified greater than the leaching criteria will require soil remediation/excavation to remove the PFAS source contributing to the groundwater impacts.

1. Regulatory Framework

The AFFF application, at the Cherry Brook Primary School, was applied directly to the fields. These released PFAS compounds were either sorbed onto the soil and/or infiltrated to the underlying groundwater. In accordance to the Connecticut Environmental Conditions Online database (CTECO), the CTDEEP has identified that the groundwater beneath the site as designated as "GA", indicating that is suitable for drinking without treatment. The adjacent Cherry Brook (located east and south of the Eastern Field) has been designated as a Class A surface water body. Class A surface waters include habitat for fish and other aquatic life and wildlife; potential drinking water supplies; recreation; navigation; and water supply for industry and agriculture.

CTDEEP has established Remediation Standard Regulations (RSRs) which defines various regulatory criteria to compare site characterization data to determine if there is an exceedance that would either require further evaluations or potentially remedial actions. In the case of PFAS, the CTDEEP has included these compounds under the Additional Polluting Substance (APS) criteria which have not been promulgated but are required to be considered when conducting site assessments. In addition, the DPH has established a health advisory for drinking water, at 70 nano grams per Liter (ng/L), for the sum of 5-PFAS compounds. The criteria which the site characterization data is compared, are as follows:

- Groundwater is compared to the Groundwater Protection Criteria (GWPC) of 70 ng/L for the sum of 5-PFAS compounds.
- Soil is compared to either the direct exposure criteria (soil contact), for those soil within the upper 15-feet or the pollutant mobility criteria PMC (potential for the contaminant to leach into the underlying groundwater) for those soil above the groundwater. In the case of GA classified zones, the PMC is evaluated to the low seasonal groundwater condition. The soil criteria applicable to the Cherry Brook Primary School include:
 - Residential Direct Exposure Criteria (R-DEC) = 1,350 micro grams per kilogram (μg/Kg)
 - GA Pollutant Mobility Criteria (GA-PMC) = 1.4 μg/Kg
- An alternative pollutant mobility criteria that can be considered through the application of the RSRs (RCSA 22a-133k-2(C)(2)(c)), is to compare the results of a leachability method (i.e., Synthetic Precipitation Leaching Procedure-SPLP) to ten-times the GWPC or 700 ng/L.

This summary compares the data to these criteria.

2. Potable Water Supply Sampling

CTDEEP/DPH requested that the Town of Canton sample private potable water supply wells within a 500-foot radius of the school's property. The Town and the Farmington Valley Health Department sent letters to 11 property owners within the 500-foot radius requesting permission to collect potable water supply well samples. Only six property owners granted permission to collect these samples.

On March 16, 2020, GZA collected potable water supply samples from those six private potable water supply wells where homeowner permission was granted (18 Barbourtown Road, 203-, 210-, 214-, and 221 Cherry Brook Road, and 4 West Mountain Road). The samples were collected prior to any filtration system and after the system was purged, to collect a representative well water sample. These samples were collected in laboratory provided PFAS free sampling containers and were analyzed by EPA's drinking water Method 537.1. A total of 18 PFAS compounds were analyzed including the five regulated compounds (compounds listed in the attached summary tables). The location of the properties within the 500-foot radius are shown on Figure 2 and a summary of the analytical data is provided on Table 1.

These data reported concentrations below the DPH criteria of 70 ng/L at all potable water supplies sampled. All analyses were reported as non-detect, except of one sample collected at 210 Cherry Brook Road, where a trace concentration of 0.9 ng/L of PFOA was reported. These results were reported previously to the individual property owners, the Town of Canton, the Farmington Valley Health Department, and the CTDEEP/DPH. Analytical laboratory reports of letters are not included in this report

3. Soil Sampling

GZA submitted a work plan to the DEEP/DPH and the Town of Canton to collect soil samples based upon recommendations by DEEP/DPH. This plan was approved and included 1) the collection of shallow soil samples (0-3-inches and 0-2 feet) to evaluate potential R-DEC impacts, 2) deeper soil samples to assess if the PFAS has migrated downward deeper into the soil profile and 3) the installation of monitoring wells and collection of groundwater samples. All samples collected followed GZA's strict PFAS sampling protocols to reduce the potential for false positives. Samples were collected as follows:

- 3.1. On February 17, 2020, GZA collected twelve (12) shallow soil samples (7 from the Eastern Field and 5 from the Southern Field). The shallow soil samples collected were submitted for total PFAS analyses using a Modified EPA Method 537.1.
- 3.2. On March 26 & 31, 2020: Twelve shallow and/or deep samples were collected (9 from the Eastern Field and 3 from the Southern Field). The shallow and/or deep soil samples collected were submitted for total PFAS analyses using a Modified EPA Method 537.1.
- 3.3. On July 16, 2020, GZA collected an additional 23 shallow and/or deep samples (14 from the Eastern Field and 9 from the Southern Field). The shallow and deep soil samples collected were submitted for total and/or SPLP PFAS analyses using a Modified EPA Method 537.1.
- 3.4. On August 24, 2020, GZA collected an additional 14 shallow and/or deep samples (13 from the Eastern Field and 1 from the Southern Field). The shallow and deep soil samples collected were submitted for total and/or SPLP PFAS analyses using a Modified EPA Method 537.1.

A summary of the analytical data in comparison to the regulatory criteria are reported on Table 2 for the Eastern Field and Table 3 for the Southern Field. The following provides a summary of the data collected. The associated figures provide a depiction of the sum of the five PFAS compounds as concentration isopleths.

a) The total mass isopleth concentrations of PFAS in the shallow soils are depicted on Figure 3. The total mass analysis is required for a direct comparison to the R-DEC. However, either the results of a total massanalysis can be compared to the GA-PMC or an alternative comparison can be made by comparing the results of an SPLP analysis to ten times (10 times) the GWPC. This assessment evaluates only a direct comparison based on total mass.

- In both the Southern and Eastern Fields, the shallow soil data has indicated that all total mass concentrations were reported below the R-DEC of 1,350 μg/Kg. The greatest concentrations were reported in the Eastern Field at sample GZ-1 (0 to 3-inches) with a reported concentration of 332.6 μg/Kg.
- ii) The shallow soil data indicates that the total mass concentrations exceeded the GA-PMC of 1.4 μ g/Kg as follows:
 - (1) In the Eastern Field, all results were greater than the GA-PMC, and
 - (2) In the Southern Field, four of the nine shallow samples were greater than the GA-PMC.
- b) The SPLP isopleth concentrations of PFAS in the shallow soil are depicted on Figure 3A. The results from the SPLP analyses were compared to 10 x the GWPC.
 -) In the Southern Field, no shallow SPLP soil analyses exceeded 10 x the GWPC. As such, the SPLP data in the Southern Field is not depicted on Figure 3A.
 - ii) In the Eastern Field, 5 out of 26 shallow SPLP soil analyses exceeded 10 x the GWPC of 0.7 μ g/L. The greatest concentration was reported at GZ-33 (0.5 to 2.0 feet) with a reported PFAS concentration of 3.89 μ g/L. This location is generally beneath where the greatest total mass concentration was detected in the shallow soil.
- c) The total mass isopleth concentrations of PFAS in the deep soils are depicted on Figure 4. The total mass analysis is required for a direct comparison to the R-DEC. However, either the results of a total mass analysis can be compared to the GA-PMC or an alternative comparison can be made by comparing the results of an SPLP analysis to ten times (10 times) the GWPC. This assessment evaluates only a direct comparison based on total mass.
 - i) In both the Southern and Eastern Fields, all deep soil results were reported below the R-DEC of 1,350 μ g/Kg. The greatest concentration was detected at GZ-D-5 (3 to 5 feet) with a reported concentration of 337.7 μ g/Kg.
 - ii) The data indicates that the total mass concentrations exceeded the GA-PMC of 1.4 μ g/Kg as follows:
 - (1) In the Eastern Field, three of twelve deep samples were greater than the GA-PMC.
 - (2) In the Southern Field, two of six deep samples were greater than the GA-PMC.
- d) The SPLP isopleth concentrations of PFAS in the deep soil are depicted on Figure 4A. The results from the SPLP analyses is compared to 10 x the GWPC.
 - i) In the Southern Field, no shallow SPLP soil analyses exceeded 10 x the GWPC. As such, the SPLP data for the Southern Field is not depicted on Figure 4A.
 - ii) In the Eastern Field, 2 out of 12 deep SPLP soil analyses exceeded 10 x the GWPC of 0.7 μ g/L. The greatest deep soil concentration was reported at GZ-D-33 (3 to 5 feet) with a reported PFAS concentration of 1.25 μ g/L. This location is generally beneath where the greatest total mass concentration was detected in the shallow soil.

4. Monitoring Well Installation and Groundwater Sampling

On July 31, 2020, GZA installed four groundwater monitoring wells (GZ-1 to GZ-4). One well (GZ-1) was installed downgradient of the Southern Field and three monitoring wells (GZ-2, GZ-3, and GZ-4) were installed in the Eastern Field. These wells were installed to depths ranging from approximately 14.5 to 20 feet below ground surface. All monitoring wells were screened across the groundwater table. No deep wells were installed.

On August 4, 2020, GZA developed these wells to remove accumulated silt from well construction and to provide proper communication between the aquifer and the well so that a representative groundwater sample can be

collected. These wells were surveyed to a temporary reference Site datum of 100 feet. Elevation data was collected at the tops of the PVC monitoring well casings.

On August 14, 2020, GZA measured the depth to groundwater from the referenced elevation at each well. The depth to groundwater was subtracted from the referenced elevation to calculate a groundwater elevation. These data were used to determine the groundwater flow direction. Well construction, elevation survey data and depth to groundwater measurements are presented in Table 4. Figure 5 depict a groundwater contour map that indicates groundwater flow in a southeasterly direction, towards Cherry Brook.

On August 14, 2020, GZA collected groundwater samples from the four monitoring wells (GZ-1 through GZ-4) using low-flow techniques and procedures to reduce the potential for cross-contamination either from the sampler or equipment. These samples were analyzed using a laboratory Modified EPA Method 537.1. The results of the laboratory analyses are summarized in Table 5 and a concentration isopleth contour map for the sum for the five PFAS compounds is depicted on Figure 6. A summary of the groundwater data is as follows:

- A. The groundwater data did not identify concentrations above the GWPC of 70 ng/L, downgradient of the Southern Field.
- B. Elevated concentration exceeding the GWPC were reported at the three wells installed in the Eastern Field. The greatest concentration (16,810 ng/L) was reported at well GZ-2 located in the central portion of the AFFF release area.
- C. Concentrations above the GWPC were also reported to the east of well GZ-2, at well GZ-3 (160 ng/L). While groundwater flow is to the southeast, Cherry Brook is also located east of the site given the alignment of Cherry Brook.
- D. Monitoring well GZ-4 is located downgradient of the release area, based upon groundwater flow direction. At this location, the concentration (2,600 ng/L) was reported above the GWPC.

5. Regulatory Compliance

These investigations have identified that soil and groundwater have been impacted by the application of historic fire-fighting foams. A summary of data compared to the regulatory criteria is presented below:

A. Residential Direct Exposure Criteria (R-DEC)

- i. No shallow or deep soil exceedances were reported above the R-DEC in either the Southern or Eastern Fields.
- ii. GA-Pollutant Mobility Criteria (GA-PMC)
- iii. As discussed in Section 1, there are alternative RSR methods that can be used when comparing the data to the GA-PMC. On October 8, 2020, the DEEP concurred "that the applicability of the regulations (RCSA 22a-133k-2(C)(2)(c)), using SPLP results greater than 10 x the GWPC, to address the highest levels of PFAS contaminated soil". Applying the 10 x GWPC to the soil data, the following is applicable:
 - i. In the Southern Field, no shallow or deep soil samples were reported with concentrations above the 10 x GWPC. Therefore, no remediation actions would be required based on the available data set.
 - ii. In the Eastern Field, shallow and deep soil samples reported concentrations above the 10 x GWPC. The areal extent of SPLP data above 10 x GWPC in the shallow soil (0 to 2 feet) is reported greater than the deeper (4 to 6 feet) soil samples. The total volume, that might require remedial action, to comply with the 10 x GWPC, has been estimated at approximately 2,500 cubic yards.

B. Groundwater Protection Criteria (GWPC)

i. In the Southern Field, monitoring wells GZ-1, reported concentrations below the GWPC.

ii. In the Eastern Field, monitoring wells GZ-1, GZ-2, and GZ-3 reported concentrations above the GWPC.

To determine the extent of PFAS plume, additional delineation would be required, as requested by DEEP.

Recommendation

The data collected as of the issuance of this letter has identified that soil and groundwater exceedances are present in the Eastern Field from the application of the historic fire-fighting foams. GZA recommends that limited additional soil sampling be completed to further define the limits of 10 x GWPC exceedance. The goal would be to reduce the areal extent that may require remedial actions. With respects to groundwater, the DEEP/DPH has requested additional groundwater delineation. This would include the installation of additional monitoring wells to define background conditions and the extent of PFAS concentrations exceeding the GWPC as the PFAS plume migrates towards Cherry Brook, east and south of the release. These recommendations will be submitted to the Town of Canton under a separate proposal.

If you have any questions of wish to discuss this report, please do not hesitate to contact GZA.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Richard J. Desrosiers, LEP, PG

Associate Principal/Hydrogeologist P.E.

David Rusczyk, PE

Consultant/Reviewer

Benjamin D. Rach Project Manager

Attachments:

Table 1 – Summary of Potable Water Supply Analytical Results

Table 2 – Eastern Field – Soil Sampling Data

Table 3 - Southern Field - Soil Sampling Data

Table 4 – Well Construction Details

Table 5 – Summary of Groundwater Analytical Results

Figure 1 – Site Locus

Figure 2 – Potable Water Supply Properties

Figure 3 – Shallow (0-2') Soil PFAS Sample Results (Total Mass Analysis in ppb)

Figure 3A – Shallow (0-2') Soil PFAS Sample Results (SPLP Analysis in ppb)

Figure 4 – Deep (4-6') Soil PFAS Sample Results (Total Mass Analysis in ppb)

Figure 4A – Deep (4-6') Soil PFAS Sample Results (SPLP Analysis in ppb)

Figure 5 – Groundwater Flow Direction

Figure 6 – PFAS Groundwater Plume

TABLES

Table 1Summary of Potable Water Supply Analytical Results

Town of Canton 4 Barbourtown Road Canton, CT

						Well Water Supply Samples	Syldding.	Samples												
Property Address			18 Barbourtown Road	203 Cherry Brook Road	Brook	210 Cherry Brook Road	۲ pe	214 Ch	214 Cherry Brook Road	k Road	221 C Brook	221 Cherry Brook Road	4 West Mountain Road	rt Road		& o	QA/QC Samples	s <u>e</u>		
		,							5)	Sample IDs and Date Sampled	and Date Sa	mpled								
Parameters	Units	RSR Criteria	18 Barbourtown Road	203 Cherry Brook Road		210 Cherry Brook Road		214 Cherry Brook Road		214 Cherry Brook Road DUP		221 Cherry Brook Road	4 West Mountain Road		Field Blank-031620		Field Blank-033120		Trip Blank-031620	.620
CT DPH Drinking Water Action Level			3/16/2020	3/16/2020	120	3/16/2020	0	3/16/2020		3/16/2020	3/26/2020	72020	3/16/2020	120	3/16/2020		3/31/2020		3/16/2020	
Perfluorooctanoic acid (PFOA)	ng/L		< 3.4 U	< 3.5	n	6'0	ĵ	< 3.4	v Р	< 3.5 U	< 3.4	>	< 33	n	< 4.1 L	` 	< 3.9	v 0	< 4.5	_
Perfluorooctanesulfonic acid (PFOS)	ng/L	SUM	< 3,4 U	< 3.5	1	< 3.4	n	< 3.4	> 	< 3'2 N	< 3.4	n	< 3'3	n	< 4.1 L	·	< 3,9	·	< 4.5	_
Perfluorononanoic acid (PFNA)	ng/L	of - 5	< 3.4 U	< 3.5	n	< 3.4	Ω	< 3.4	v П	< 3.5 U	< 3.4	⊃	< 3.3	Ω	< 4.1 L	· 0	< 3.9	· 0	< 4.5	Ь
Perfluoroheptanoic acid (PFHpA)	ng/L	Compounds	< 3.4 U	< 3.5	n	< 3.4	Π	< 3.4	v П	< 3.5 U	< 3.4	⊃	< 3'3	Ω	< 4.1 L	° П	< 3.9	×	< 4.5	_
Perfluorohexanesulfonic acid (PFHxS)			< 3.4 U	< 3.5	n	< 3.4	n	< 3.4	° П	< 3.5 U	< 3.4	⊃	< 3.3	n	< 4.1 L	· 	< 3.9	×	< 4.5	О
Sum of PFAS Compounds	ng/L	70	ΔN	QN		6.0)	QN	_	ND	ΔN		ΔN		QN		ΔN	z	ΔN	
Other Non-Regulated PFAS Compounds																				
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF30UdS)	ng/L	NC	0 8'9 ×	6'9 >	n	8'9 >	n	8'9 >	° п	n 6'9 >	6'9 >	>	< 6.7	n	\ 83 L) 	< 7.8	> 0	68>	Ь
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ng/L	NC	n 8'9 >	6'9 >	n	8'9 >	n	8'9 >	v П	n 6'9 >	6'9 >	n	2'9 >	n	1 E'8 >	· 	< 7.8	> 0	6'8 >	\neg
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CI-PF3ONS)	ng/L	NC	n 8'9 >	6'9 >	n	8'9 >	n	8'9 >	v П	n 6'9 >	6'9 >	n	2'9 >	n	∩ E'8 >	· 	< 7.8	> 	6'8 >	\neg
Hexafluoropropylene oxide dimer acid (GenX)	ng/L	NC	n 8'9 >	6'9 >	n	8'9 >	n	8'9 >	> n	n 6'9 >	6'9 >	n	2'9 >	n	\ 8'3 r	· 	< 7.8	> 	6'8 >	\neg
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	ng/L	NC	n 8'9 >	6'9 >	n	8'9 >	n	8'9 >	> 	n 6'9>	6'9 >	n	2'9 >	n	\ 8'3 \	· 	< 7.8	> 0	6'8 >	О
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	ng/L	NC	0 8'9 ×	6'9 >		8'9 >	n	8'9 >	> 	n 6'9 >	6'9 >)	2'9 >	n	\ 8'3 r	·	< 7.8	> n	6'8 >	_
Perfluorobutanesulfonic acid (PFBS)	ng/L	NC	< 3,4 U	< 3.5	n	< 3.4	n	< 3.4	v П	< 3'2	< 3.4	n	< 33	n	< 4.1 L	· 	< 3'6	·	< 4.5	_
Perfluorodecanoic acid (PFDA)	ng/L	NC	< 3,4 U	< 3.5	n	< 3,4	n	< 3.4	v П	< 3.5 U	< 3,4	n	< 3'3	n	< 4.1 L	· 	< 3'6	> 	< 4.5	\neg
Perfluorododecanoic acid (PFDoA)	ng/L	NC	< 3,4 U	< 3.5	n	< 3.4	n	< 3.4	v П	< 3.5 U	< 3,4	⊃	< 3.3	n	< 4.1 L	` 	< 3.9	· \	< 4.5	_
Perfluorohexanoic acid (PFHxA)	ng/L	NC	< 3.4 U	< 3.5	1	< 3.4	n	< 3.4	> 	< 3.5 U	< 3.4	-	< 3'3	n	< 4.1 L	· n	< 3'6	U < 4.5	5'1	_
Perfluorotetradecanoic acid (PFTA)	ng/L	NC	n 8'9 >	6'9 >	n	8'9 >	n	8'9 >	> 	n 6'9 >	6'9 >	n	2'9 >	n	า 6.8 >	· 	< 7.8	> n	6'8 >	_
Perfluorotridecanoic Acid (PFTriA)	ng/L	NC	< 3,4 U	< 3.5	n	< 3.4	n	< 3.4	v П	< 3'2 N	< 3.4	n	< 33	n	< 4.1 L	· 	< 3'6	·	< 4.5	_
Perfluoroundecanoic Acid (PFUnA)	ng/L	NC	< 3.4 U	< 3.5	n	< 3.4	n	< 3.4	> 	< 3.5 U	< 3.4	n	< 3.3	n	< 4.1 L	۰ ۱	< 3.9	·	< 4.5	n
Notes:																				

Notes:

1. CT DPH - Department of Public Health

2. Ste - Remediation Standard Regulations

3. Bold cell - exceedance of Drinking Water-Action Level

4. ng/L - nano-gram per liter (parts per Trillions)

5. NC - No established criteria
V. I vik detector, below Method Detection LimitA red cell indicates Residential Direct Exposure Criterion Exceedance
7. J. Estimated value
8. QA/QC - Quality Assurance/Quality Control Samples

		DCD ADC Cultonia	i	-	Location Sample ID	62.1	Shallow & Deep Co-Located Samp	ed Samples	627.0.5	6273	GZ D-3 (deep) Located between GZ-2 & GZ-3 (shallow	Detween GZ-2 & GZ-3	shallow)	Shallow GZ.4	shallow & Deep Co-Located Samples	sales .	3	52 D-2 (deep) LOC 67.5	D-2 (deep) Located between GZ-5 & 67.5.5	(deep) Located b		Sus
Parameters				Dec	Depth Interval	GZ-1 (0-3*)	GZ-1R (0.5-2')	GZ-1R (0.5-2°)	29	29	(5-0-3 (3-2)	62-3 (0-3")	dnd (,2:015:79	62-4 (0-3")	S-D-1 (3-2)	3-51	£-015-Z9	0-3"	79	GZ-D-Z (3-5') GZ	Z9 (25-0-2(3-2)) (25-6(0-3))	GZ-D-2 (3-51) GZ-6 (0-3") GZ-7 (0-3") GZ
	R-DEC	I/C-DEC GA	GA-PMC 10	10X GWPC Dat	Date Sampled	02/17/2020	02/16/2020	02/16/2020	03/31/2020	L	03/26/2020	02/11/2020	02/11/2020	02/11/2020	03/26/2020	020	02/17/2020	H	03/26/2020	03/26/2020 02/17/2020	02/17/2020	02/11/2020
	Total Mass	Total Mass Tota	Total Mass	SPLP	Units	3x/3n	8X/8n	√3n	ay/gn	ay/an	3y/3n	8)//8n	ay/gn	84/8n	8X/XBn		ay/an		33/3n	33/8n 33/8n		8X/8n
CT DEEP Additional Polluting Substances (APS) for PFAS	3x/8rl	ng/Ke	ng/Kg	µg/L And	Analysis Type	N	×	d1dS	Z	N	Z	z	N	2	×		2		×	N N	Z Z	N N
Perfluorooctanoic acid (PEOA)						2.7	17.7	0.0904	177	S	1	6.1	7	62'0	27:0	9	1 13	< 0.95	0 0	55 U T.8	55 0 1.8 4.1	55 U 1.8 4.1 1.5
Perfluorooctanesuifonic acid (PFOS)	Sum of	Sum of Su	2 Jo mns	Sum of		230	98.6	0,684	270	2.1	10	2'8	5'5	3.6	0,24	1	2	0.19		5.3	-	5.3
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS 5-	S-PEAS	5-PFAS		65	8.77	0.203	45	33	3.4	4.1	3.5	0.48	<1.2	0		< 0.95	5	3.8	n	3.8
Perfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds		6.9	3.79	0.146	2	1.9	0.38	0.71	0.76	<1.3	<1.2	0 0	0.33	< 0.95	0	U 0.7 J	U 0.7 J 3.8	
Perfluorohexanesulfonic acid (PFHxS)		_	_			33	13.6	0.455	81	1.9	0.37	0.35	0.31	<1.3	<1.2	0	<1.2 U	< 0.95	0	U <1.3 U	0 <1.3 0 15	U <1.3 U 15 0.8
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		332.60	117.53	1.58	337.70	40.80	15.15	12.86	12.07	2.17	0.46	4.	4.34	0.19		11.60	11.60 130.90	
Other PFAS Compounds Not on APS List																						
11-chloroekosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	WC	NC	NC	NC		< 2.8	<1.1	< 0.00181	1 < 2.4	1 < 2.7	< 2.3 U	< 2.3 U	< 2.5 U	< 2.7	<2.4	P	< 2.4 U	<1.9	ı	< 2.7	<2.7 U <2.7 U	-
4,8-dioxa-3H-perfluorononancic acid (ADONA)	W	NC	WC.	NC		0 87 >	<1.1	< 0.00181	5.2.5	1.2.5	<2.3	CZ.3	0 × 2.5 ×	(7)	\$7.7×	0	9.7	0 613		0 /72>	0 (72) 0 (72)	
9-chlorohexadecafluoro-3-oxanone-1-sultonic acid (9CI-PE3ONS)	WC	NC	NC.	NC		0 0	<1.1	< 0.00181	5.2.4	1.2 > 1	< 2.3	< 2.3 U	< 2.5	< 7.7	< 2.4	0	0 5	61.9		<2.7	0 <27/ 0 <27/	9
Hexafluoropropylene oxide dimer acid (GenX)	WC	NC	NC.	NC		0 975 >	0 11 >	< 0.0453	6.4.9	6.5.4	< 4,5	C 4.6 U	5>	< 5.4	//5>	0	9 8	< 3.8		< 5.4	<5,4 U <5,4 U	<5,4 U <5,4 U <4,5
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFUSAA)	WC	NC	NC.	NC		<1.4	<1.1	< 0.00181	7 < 1.2	- 1.4	<1.1	<1.2 U	< 1.3	< 1.3	< 1.2	0	0 7	< 0.95		< 1.3	<1.3 U <1.3 U	<1.3 U <1.3 U <1.1
N-methylperfluoro-1-octanesultonamidoacetic acid (NMeFOSAA)	WC	NC	NC.	NC		<1.4	<1.1	< 0.00181	7.1.5	- 1.4	<1.1	C1.2	<1.3	<1.3	< 1.2	0	0 7	0 560>		<1.3	<1.3 0 <1.3 0	0
Perfluerobutanesultonic acid (PFBS)	WC	NC	NC.	NC		0.65	<1.1	0.0197	0.33	< 1.4	V 111 0	<1.2 U	< 1.3	<1.3	< 1.2	0	1.2	0 560 >		<1.3	< 1.3 U 0.5 J	
Perfluorodecanoic acid (PFDA)	×	NC	WC.	NC.		13	13.4	0.13	1'0	57	0.81	1.8	1.7	0.43	< 1.2	0	1 99	0 66.0 >		3.5	3.5	3.5 1.4
Perfluorododecanoic acid (PFDoA)	W	NC.	NC.	N.C.		179	7/9	969000	16/0	1.4	0 175	0.5	0.34	\$T.5	2.1.5	0	0 7'	0 <6/0>		0.44	97b E 650	97'0 9'b (bb'0
Perfluoroflexanosc acid (PFHXA)	W	NC.	W.C.	MC		5.5	7.84	0.119	7.7	7670	0.27	65.0	0.6/	<1.3	7.1.>	0.	_	0 950 >	Н	0.5	67 7 90	
Perfluorotetradecanoscacid (PFTA)	WC	NC	NC.	NC		1.4	1.69	< 0.00181) <1.2	97.0	<1.1	<1.2 U	< 1.3	<1.3	< 1.2	0	1.2	< 0.95 U		<1.3	<1.3 U 1.1 J	0
Perfluorotridecanoic Acid (PFInA)	WC	NC	NC.	NC		3.5	13.2	0.00633	3.8	1.1	O 111>	0.26	0.25	<1.3	< 1.2	0	1.2	0 56:0>		0.41	0.41 3 4.5	-
Perfluencindecanolo Ecid (PSI InE)	-29		- 20	J			1.97	22200	4		200			100			-		ı			000

					Location	Shallow & Deep	Shallow & Deep Co-Located Samples		Shallow	Shallow & Deep Co-Located Samples	sajdur	L	Shallow	Shallow			Shallow & Deep Co-Located Samples	Located Sample.	52				Shallow & Dev.	Shallow & Deep Co-Located Samples		
		RSR - AF	RSR - APS Criteria		Sample ID	62-13	9-0-29	62-17	GZ-17	-17 62-0-13	L	GZ-D-13	GZ-14	62-15	9	62-19	62-19	GZ-D-15	515	GZ-D-15	3	62-18	62-18	CZ-D-14	6Z-D-14	14
Parameters					Depth Interval	GZ-13 (0-0.25°)	(2-D-6(3-5')	GZ-17 (0.5-2°)	2.) GZ-17 (0.5-2')	0.5-2') GZ-D-13(4-6')		GZ-D-13(4-6) G.	62-14 (0-0.25")	62-15 (0-0.25")	47-Z9	GZ-19 (0.5-2')	GZ-19 (0.5-2')	GZ-D-15(4-6')	5(4-6')	GZ-D-15(4-6')	62:18	GZ-18 (0.5-21)	GZ-18 (0.5-2')	GZ-D-14(4-6')	GZ-D-14(4-67)	(4-6)
	R-DEC	I/C-DEC	GA-PMC	10X GWPC	Date Sampled	03/56/2020	03/26/2020	02/16/2020	0207/16/2020	72020 07/16/2020		07/16/2020	03/26/2020	03/26/2020	2/20	07/16/2020	02/16/2020	02/16/2020	/2020	07/16/2020	11/20	07/16/2020	07/16/2020	02/16/2020	02/16/2020	070
	Total Mass	Total Mass	Total Mass	SPLP	Units	8y/8n	8)//8n	8)//Sin	1/8n	A ug/Kg		ng/L	BX/8n	S)//Sn	3	ng/Kg	1/Sin	/Sn	S)//Sn	1/8n	'n	ug/Kg	1/8n	8)(/Sn	7/8n	Ĺ
Polluting Substances (APS) for PFAS	8y/8rl	83//8ri	8X/8ri	ng/L	Analysis Type	2	z	2	Sple	N .	S.	SPLP	z	z		2	SPLP	_		dids		N	dids	2	SPLP	
4						00.48	6.7	1.97	0.0524	1.85	9650.0	7	5.6	0.56	<1.11	-	0.0218	<1.1	2	.0237	<1.13		0.0205	17.77	0.0368	
(PFOS)	Sum of	Sum of	Sum of	Sum of		4,7	m	18.4	0,13	4.64	0.0543	9	5.5	1.3	1.29		0.0038	<1.1	0	0.00521	1.57		0.00283	< 1.05	0.0144	
W	5-PFAS	5-PFAS	5-PFAS	5-PFAS		24	24	4.08	0.0694	2.78	0.0711	0	5.2	1.6	2.16		0.0192	<1.1	0 0	0.00732	2.17		0.0157	< 1.05	0.0232	
(bd)	Compounds	Compounds	Compounds	Compounds		4.7	9	1.8	0.0656	1.52	0.0596	7	2.7	<1.6 U	< 1.11	0	0.017	< 1.1	0	0.0401	<1.13		0.0153	< 1.05	0:0309	
(PFHxS)						c1.5	<1.2 U	2:38	0.0742	F < 1.01	0.0256	F 2	2.5	c1.6 U	<1111	b	0.00403	<1.1	0	.003S6 F	< 1.13		0.00496 F	F 1.12	0.0416	
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		41.80	39.70	28.63	0.39	10.79	0.27	19	19.50	3.46	3.45		20.0	00:00	ĺ	80.0	3.74		90'0	2.23	0.15	
on APS List																										
undecane-1-sulforic acid (11CI-PF3OUdS)	NC	NC	NC	NC		23 0	< 2.4 U	< 1.09	U < 0.00174	10.1 > 0 +	0 < 0.005	2	< 3,4 U	< 3.1 0	< 1.11	Đ	< 0.00177 U	<1.1	0	U 0017	<1.13		< 0.00175) < 1.05	1 < 0.00182	Þ
anoic acid (ADONA)	SW	NC	SC	NC	_	2000	< 2,4 U	< 1.09	V10000> 0	1011 > 1011	S00:0 > 0	0	3,4	-8.1 D	- CT.11	0	< 0.00177 0	(T)	0	(0017)	<1.13		< 0.00175	< 1.05	0.00182	0
xanone-1-sultonic acid (9CI-PE3ONS)	WC	NC	NC	NC	_	2 8 9	< 2.4 0	< 1.09	VI0000> 0	0 < 1.01	S00:0 > 0	0	3,4	< 3.1	<1.11		< 0.00177	<1.1	0	0.0017	< 1.13		< 0.00175	< 1.05	5 0.00182	0
dimer acid (GenX)	NC	NC	NC	NC		6.5.5	0.438	< 10.9	U < 0.0434	0 <10.1	0 < 0.125	9	0 8:9	c 6.3	<11.1	ь	< 0.0443 0	CII >	0	0.0442	< 11.3		< 0.0437	c 10.5	0.0456	Þ
ifonamidoacetic acid (NetFOSAA)	38	NC	200	NC		< 1.5	< 1.2	< 1.09	CI00:0 > 0	1.01 > 0 4	0 < 0.005	2	T'/ 0	0.1.5	< 1.11		< 0.00177	<11.	1>	1001/	<1.13		< 0.00175	- II > - I	28T00'0 > f	o
isultonamidoacetic acid (NMeFOSAA)	NC	NC	NC	NC	_	< 1.5	<1.2 0	< 1.09	CT00002	4 0 < 10.1	0 < 0.005	0	1.7	e.1.6	<1.11		< 0.00177	< 1.1	9	0.0017	< 1.13		< 0.00175	- II II	5 < 0.00182	0
(PFBS)	WC	NC	NC	NC	_	<1.5	<1.2 0	< 1.09	0.00537	< 1.01	S00:0 > 0	·	177	<1.6 U	<1.11		< 0.001// U	<1.1	9	0.0017	< 1.13		< 0.00175	< 1.05	9/20070	
4)	NC	NC	NC	NC		14	6.6	7.17	0.0398	1.03	0.0107	7	878	0.63	< 1.11	5	< 0.00177 U	<1.1	0	0.00170	< 1.13		< 0.00175 L	50.L > C	0.00302	
FDDA)	W	MC	W	MC	_	777	0.49	10.1	< 0.00174	10.12 0 6	0 00000	9	7.68	0 975	17.75		0 //10000 >	7.7.5	0	0.001/	5 1.13		5770075	50.1.5	7870070 S	0
(A)	WC	NC	WC	NC	_	7.7	7.7	1.28	0.0523	1.3	1050.0			9.1.9	< 1.11		0.0129	< 1.1	0	1970	<1.15		0.0123	< 1.05	0.0264	
(PFIA)	WC	NC	WC	NC	_	0.51	<1.2	< 1.09	O < 0.0017A	101 > 0 +	< 0.005	·	1.7	e.T.e	<1.11		0 //1007>	<1.1	i o	0.001/0	<1.13		< 0.00175	< 1.05	0.00182	0
HIA)	WC	NC	NC.	NC	_	1.4	0.27	75.2	< 0.0017	10.1 > 0 +	00000 > 0	0	0	<1.6 U	<1.11	0	0 //1007/	<1.1	9	0.0017	< 1.13		< 0.00175	< 1.05	2810000 > 6	0

Table 2
Eastern Field - Soil Sampling Data
Cherry Brook Elementary School
Canton, Connecticut

				-	Location	Shallow			Shallow & Deep	Shallow & Deep Co-Located Samples			Shallow &	Shallow & Deep Co-Located Samples			Shallow & Dee	Shallow & Deep Co-Located Samples	
		RSR - APS Criteria	ritoria	S	Sample ID	97-29	9Z-79	GZ-20	02-29	9T-Q-Z9	9T-G-Z9	62-21	6Z-21	2T-0-Z9	2T-0-Z9	62-22	GZ-22	6Z-D-18	8T-0-29
Parameters				Dept	Depth Interval	62-16 (0.5-2")	GZ-16 (0.5-2")	62-20 (0.5-2)	GZ-20 (0.5-2')	GZ-D-16(4-6')	GZ-D-16[4-6")	GZ-21 (0.5-2 ¹)	GZ-21 (0.5-2°)	GZ-D-17(4-6')	GZ-D-17(4-6')	62-22 (0.5-2")	62-22 (0.5-2")	GZ-D-18[4-6")	GZ-D-18(4-6')
	R-DEC	I/C-DEC	GA-PMC 10X	10X GWPC Date	Date Sampled	07/16/2020	07/16/2020	02/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/16/2020	07/11/2020	07/11/2020	07/16/2020	02/16/2020	02/20/2020	02/20/2020
	Total Mass	Total Mass	Total Mass S	SPLP	Units	8y/8n	1/8n	BY/Bn	1/200	ay/an	1/20	ng/Kg	1/8n	3X/Sin	1/3n	8)//8n	1/8n	ay/an	1/8n
CT DEEP Additional Polluting Substances (APS) for PFAS	3X/3ri	ax/an	1 83/81	ug/L Anal	Analysis Type	z	SPLP	z	dids	z	dids	Z	didS	z	SPLP	z	SPLP	z	didS
fluorooctanoic acid (PFOA)						o 1715	0.0254	4,48	0,128	4.98	0.182	4,88	601.0	<1.06 0	0.0284	0 2880 0	0,0132	1.33	0.0373
Perfluorooctanesulfonic acid (PFOS)	Sum of	Sum of	Sum of Su	Sum of		1.66	0.00713	39.6	0.291	4.77	0.0762	30	0.122	15,8	0,157	1.86	0.0091	1.1	0.00707
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS 5-	S-PEAS		1.3	9910'0	16.8	0.308	15.2	0,441	9.62	0.116	3.63	0.0634	U 886.0 >	0.0162	< 1.01 U	0.0101
Perfluorohentanoic acid (PFHn&)	4	2	-	Commonwell	1	<11 11	97100	2.02	0.0848	3.15	0.131	1.80	0.063	<108	0.022	11 888 0 >	0.00743	< 1.01	0.0242
Confidence to the confidence of the confidence o	_	-	_	commod		1112	20100	2.0	0,0000	000	30000	4.74	2000	2017	37000	00000	0.0000	1017	0.00000
J			1		_	0 117	0.0100	0.2	0.0000	70.7	0.0330	7/7	0.0440	0 0017	0.010	v 0.388	0.0023	0 101	0.00342
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		2.96	0.07	65.55	0.90	29.62	0.88	48.10	0.45	19.43	0.29	1.86	0.05	2.43	60.0
Other PFAS Compounds Not on APS List																			
chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF30UdS)	NC	NC.	NC	NC NC		<1.1	< 0.00185 U	<1.1	< 0.00182 U	<0.97	0.005 U	<1.18	< 0.00185	<1.06	< 0.00179 U	< 0.988	< 0.00183	< 1.01	< 0.00177 U
dioxa-3H-partitionopopole acid (ADSNA)	JN	200	l	×	l		11 111111111111111111111111111111111111		CHIMINA	1000	100000	11 81 12	10000000	2118	- H 100 174	2005-012	C1108136	10.10	27100112
prohecations 4 occasion 1, eithor and 1971 PERING	JW	JN.			1	11	STULING S	1112	CHIRINA	79.02	SOURCE IN COLUMN 1	11.13	11 0000000	<118	67 (101)	385.02	THE STREET	1013	27,000
intropropulent oxide dimer acid (GenX)	JW	JA.	1	100	1	- H2	CITIZENS I		201105-0	/62	20138	1118	THE PROPERTY OF	\$ 10 P	2 (1 (1 d.d.)	8865	114344	1013	< 0.15a2
Sobsettions-1-octaoeuthocamidoaretic acid (Net-CNAM)	JN	JN.		200	1	100	STITLES I	112	CHIRING	100	SOURCE IN COLUMN 1	11 81 12	- CONTRACTOR	STIR.	1 87 (III) 18	100000	SUBJECT 1	1013	< D. C.
doublings of comments in management and thinks comed	200	200	1		1	7.77	COLOGO S	7.7.7	2000000	1000	50000	2 777	COLOGNO.	2015	CTONO.	One of the second	Sarana >	20.5	CHOOSE CONTRACTOR
Orobidance Book and IDEBS	JIN	JA	I		1		1000000			10000	700000	51.12	PARTITION	1000	11 11 11 11 11 11 11 11 11 11 11 11 11	20000	11 0000000	10.17	10000000
norodecanor and IPHM	N N	2 20	1			1112	COLOGUE I	2.45	715111	100	791011	0.00	000000	The same	2,000,000	11 296.03	1131399	10.13	1/10002
prododecapor acid IPLIOA)	N.	700		200	1	10 112	SHRIPS II	1113	CHURINA	4 /6/19	5281835	0 811.2	Sentings of	21.00	N INTERIOR	11 288.02	SHMIK	10.13	27,000.00
Horobexanoic and IPHKA1	. N	374			1	10	100		(1000)		10000	11 11 11 11	(0.152.5)	STIR.	101158	200.02	11315/20	1013	110172
orotetradecapac and IPSTA1	J.N	2 20	1	2 20		1112	CTO STREET	A.A.A.	CHIMINA	7502	20100	0 118	0.0040	20113	57111112	11 285.02	0.0000	10.13	CHINE //
nototototototo bergilbitish	JN.	2 10	1	1 10		1112	COLOGUE SELECTION OF THE PERSON OF THE PERSO	1.70	2000000	0 (50)	20002	2 4.40	0.00000	2012	6/10005	11 285.02	1 200000	10.13	1/1007
erfluoroundecanoic Acid (PEUnA)	NC.	2		W	1	0 212	c 0.00185	209	0.0534	4.24	0.00735	857	0.00544		0.0007	0.988	< 0.00018	0 101 >	4.00003
				9	Location	Shallow & Deep Co-Lo	ep Co-Located Samples	Shallow & Deep Co-Located Samples	Located Samples	L	Shallow & Deep Co-Located Samples	Shallow & Dees	Shallow & Deep Co-Located Samples	Shallow & Du	Shallow & Deep Co-Located Samples	Shallow & Dee,	Shallow & Deep Co-Located Samples	Shallow	
		RSR - APS Criteria	riteria	Sé	Sample ID	06:25	02-D-30	62-31	6Z-D-31	62-32	25-D-32	6Z-33	L		62-0-34	52-35		9E-Z9	
Parameters				Dep	th Interval	GZ-30 (0.5-2.0')	(25-D-30 (4-6)	62-31 (0.5-2.0)	(25-D-31 (4-6')	L	L	GZ-33 (0.5-2.0°)	L	GZ-34 (0.5-2.0')	(25-D-34 (4-67)	GZ-35 (0.5-2.0')	(25-D-35 (4-67)	GZ-36 (0.5-2.0')	
	R-DEC	I/C-DEC	GA-PMC 10X	10X GWPC Date	Date Sampled	08/24/2020	08/24/2020	08/24/2020	08/24/2020	L	L	08/24/2020	08/24/2020	L	08/24/2020	08/24/2020	08/24/2020	08/24/2020	
		_	Total Mass S	SPLP	Units	1/20	1/30	7/30	7/20	ns/,	T/20	7/30	7/200	L	T/an	1/200	L	ne/Ke	
PT DEED Additional Ballistian Collectures (ABC) for DEAC	+	4	1	Ť	Assolution Times	1000	083	0.03	000	0.03	1000	0.00	0.00	0.00	1000	0.003	100	0 2	
ingrootsook seld (PEOA)	9,794	90,094	ł	Ť	and a sold	52600	200000	91990	0.000	2100	500000	98000	21000	361.0	0.00743	28500	19200	38 P	
efficence chance of feet (DEOE)	Sum of	Jon or S	S. man	Sum of	1	0.103	0.0364	0.00693	0.00001	O ODAGA	0.0038	3.00	0.001	37.0	235.0	3.04	0 0	3 33	
contained and (F1 co)	0 100	20110		Solitor	1	00770	0.0304	0.0000	0.00001	0,0000	17700	0000	N.301	0000	PC2/0	2004	0.000	57.7	
PETILIDOTORIORIC BOID (PPINA)	_	_	_	PPAS		0.028	0.0111	20/070	TQtQQ'Q	/17000	0 6/100'0 >	0.23	2770	0.236	0.0137	0.231	0.0452	× 1.03	
?erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds Com	Compounds		0.154	0.00511	0.034b	0.0119	0.0158	0.00623	0.0888	0.0227	0.121	0.00734	0.0526	0.0267	5.38	
Perfluorohexanesulfonic acid (PFHxS)						0.225	0.00595	0.00779	0.00347	0.026	0.036	0.404	0.138	0.277	0.0484	0.0957	0.0297	4.18 F	
Sum of PFAS Compounds	1,350	41,000	1.4 0	0.70		0.61	90'0	0.17	0.03	80'0	0.07	3.89	1.25	3.48	0.33	1.48	0.28	16.14	
Other PFAS Compounds Not on APS List																			
-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3CUdS)	NC	NC.	NC	JN.		C D 00191	c0.0019	< 0.00184	< 0.00187 U	U 610010 >	< 0.00179	< 0.00188	< 0.00187	< 0.0019	< 0.000178	< 0.0175	U 9100.0 >	< 1.03	
-dioxa-3H-perfluorononanoic acid (ADCIMA)	SW	32		×	l	0 18100181	0 00005	< 0.00184	0.000087	6100000	0 6/10/05	0 80000	< 0.00182	< 0.0019	< 0.00178	< 0.0175	0 50000>	< 1.03	
hexadecatluoro-3-oxanone-1-suitonic acid (9CI-PF3CINS)	NC	30		×	l	O 18100015	0 60000>	< 0.00184	0.000082	6100000	0 6/10/0>	0 800000	< 0.00182	< 0.0019	< 0.000178	< 0.0175	0 50000>	< 1.03	
luorooroovlene oxide dimer acid (GenX)	NC	200	JN.	×	l	< 0.0477 U	< 0.0475	0.046	< 0.0456	< 0.0874	< 0.0448	0 1/5000>	0.00556	< 0.0476	0.0445	< 0.437	0 000076	< 10.3	
foerfluoro-1-octanesultonamidoacetic acid (NetFOSAA)	J.	¥		ž	l	< 0.00191	0 60000>	< 0.00184	0 2810000 >	6100000	0 6/1000>	0 800000	< 0.00182	< 0.0019	< 0.000178	< 0.0175	0 50000>	< 1.03	
Withouth Inctanguitonamidoacetic acid (NMeROSAA)	JN.	y.	l	×	l	0 1610000>	0.00005	0.000184	0.000082	6100000	0.00000	0 880000	< 0.00182	< 0.0019	< 0.000178 U	0 50005	0 50000	< 10.3	
	J.	¥		×	l	< 0.00191	0 610000>	< 0.00184	0.000082	6100000	0.00087	0,00741	0.00466	0.00226	< 0.000178	< 0.0175	0 000019	< 1.03	
norodecanoic acid (PEDA)	NC	NC	NC	JW.	L	< 0.00191 U	0.0019	0.00386	< 0.00182 U	0 610000 >	< 0.00179 U	0.0685	0.0272	0.0295	0.00178 U	< 0.0175 0	0 610010 >	< 1.03	
moreodecanor and (Prinas)	MC	A.C.	l	W.	l	C DETERMINE	c coors	0 2000000	0.000182	0 570000	0 0000179	0 9970000 >	< 0.000182	C 0.00019	0 8/100/0>	C CCCL/S	O STOOLS	C 1.03	
Jaronexandic acid (PHKA)	WC.	MC	NC	×	L	0.139	0.00572	1070'0	0.000485	9,0154	0.0142	97TO	0.0261	61800	0.0067	0,0405	0.0265	67.5	
sorotetradecanoic acid (PFLA)	NC	MC.		W	l	0 1610010>	< 0.0019	< 0.00184	< 0.00182 U	< 0.0019 U	- 0.001/9 U	< 0.000388 O	< 0.00182	0 610000>	0 8/100:0>	0 5/10/0>	0 610000>	< 1.05	
fluorotridecanoic Acid (PFIriA)	NC	MC	NC	WC	L	< 0.00191	0 610000	< 0.00184	< 0.00182 U	0 610070 >	< 0.00179	< 0.000388 U	< 0.00182	< 0.0019	0 8/100T/s	< 0.0175	< 0.0015	< 1.05	

Table 3 Southern Feld - Soil Sampling Data Cherry Brook Elementary School Canton, Connecticut

					Location		Shallow & Deep Co-	cocated		Shallow &	Shallow & Deep Co-Located Samples	saidme	Shallow			Shallow & Deep Co-Located Samples			Shallow & Deep Co-Located Sample:	Located Samples	
		RSR - APS Criteria	ritoria		Sample ID	8-Z9	6Z-D-9	GZ-D-12	62-D-12	6-Z9		2-0-Z9	02:70		11-29	6Z-D-10	6Z-D-10	62-12	GZ-12R	GZ-12R	6Z-D-8
Parameters				ď	Depth Interval	(25-8 (0-3")	(S-C)6-Q-Z9	6Z-D-12(4-6')	GZ-D-12(4-6')	(,6-0) 6-29	29	GZ-D-7 (3-5°)	.e-0) 01-Z9		GZ-11 (0-3")	GZ-D-10(4-6')	(Z-D-10(4-6)	GZ-12 (0-3")	GZ-12R (0.5-2")	GZ-12R (0.5-2")	(3-2.0-8
	R-DEC	I/C-DEC	GA-PMC 10	10X GWPC Da	Date Sampled	02/11/2020	03/31/2020	02/16/2020	02/16/2020	0202/21/200	50	03/31/2020	02/11/2020		02/11/2020	02/16/2020	02/16/2020	02/12/2020	02/36/2020	02/16/2020	03/31/2020
	Total Mass	ss	59		Units	ng/Kg	89/8n	83/8n	ηζήn	8X/8n		3x/8n	8X/8n		8X/8n	ng/Kg	ng/L	8)//8n	8y/8n	U/Shn	9X/Sn
CT DEEP Additional Polluting Substances (APS) for PFAS	8y/8rl	3x/8rt	8y/8rl	ng/r yr	Analysis Type	×	N	z	d7dS	z		z	2		2	N	dTdS	z	2	dads	N
erfluorooctanoic acid (PFOA)			_			cl3 0	0.74	<1.08	0.0111	0.34	0.41		<1.5	0	0.4	0 [>	0.0133	0.58	c 0.982	c 0,005	< 1.1 0
Perfluorooctanesulfonic acid (PFOS)	Sum of		_	Sum of		111	1.3	1.42	0.00911	17.5	99'0	-	0.38	_	0.61	0	0.00994	1.6	< 0.982 U	9500.0	< 1.1
Perfluorononanoic acid (PFNA)	5-PFAS	5-PFAS	5-PFAS	5-PFAS	_	< 1.3 U	0.48	< 1.08	< 0.005	0.35	< 1.2		<1.2		0.33	<1 0	< 0.005 U	0.52	< 0.982 U	c 0.005	<1.1
erfluoroheptanoic acid (PFHpA)	Compounds	Compounds	Compounds	Compounds	<u> </u>	<1.3	0.28 J	<1.08 U	< 0.005	< 3.3	< 1.2	-	<1.2	_	<1.3 U	<1	< 0.005 U	0.28	< 0.982 U	< 0.005	<1.1 U
Perfluorohexanesulfonic acid (PFHxS)						<1.3	<1.3	< 1.08 U	< 0.005 U	<1.3	<1.2		<1.2		<1.3	<1 0	O 5000>	<1.3 U	< 0.982 U	O 5000>	<1.1 0
Sum of PFAS Compounds	1.350	41,000	1.4	0.70		1.10	2.80	1.42	0.02	1.89	1.07		0.38		1.34	0.00	0.02	2.98	0.00	0.01	0.00
Other DEAS Communication Application																					
viet rand Compounds for Oil Ard List	579	VIV	200	577		507	207	00000	20000	200			e e		200		200.00	267	11 0000	30000	
Complete State of the state of	300	J. C.		4		0 (72)	0 677	0 ST.00	0 6000	2.2.8	177		5.2.3		0 877	0.00	0 0000	0 0.27	0.382	0 00000	< 2.3
organization of the second control of the second of the se	200	MF	1	2 10	1	0 660	22.2	2 7 00	V 0.0003	0.27	477		2.2.3		0.75	7.5	20002	0.00	0 70000	0 0000	25.3
CHICA CHICAGOCCATIGOTO STOKATIONE TO SCHOOL	700	N.C.	- 10	2 10	1	0 0	522	0.77	20003	0.77	500		7.5.3		0.77		20.003	0.27	0 70000	0 0000	223
ethylogerillione 1-ethylogerillionamidoacetic acid (Neth INGA)	2 20	N N	2 20	2 20	1	213	212	2118	The street	1000	0.00		213		1 1 1 2	0 12	CHINE CHINE	775	785112	CITIES 1	0 000
methylberhuoro-1-octanesulfonamidoacetic acid (NMer-OSAA)	30	ν.	36	ž	L	0 27.5	CT2	0 80.1.5	0 0000 >	\$T.5	713		2.1.5		0 072	0 12	< 0.005	0 0.13	< 0.982	0 50000	0 177 >
rfluorobutanesulfonic acid (PFBS)	JW.	NC	NC	WC	1	<1.3	<1.3 0	< 1.08	< 0.0005	< 1.3	2.1.5	- 0	< 1.2	0	0.24	0 1>	< 0.005	< T.3 U	< 0.982 U	< 0.005	0 TT>
rfluorodecanoic acid (PFDA)	NC	NC	NC	WC		0.35	0.43	< 1.08	< 0.005	0.38	<1.2		< 1.2	-	0.47	- C - C -	< 0.005	0.51	< 0.982 U	< 0.005	< 1.1 0
Hilliorododecanoic and (PFDoA)	JN.	JN	NC	WC	L	<1.3	0.28	0 80T>	< 0.000 0	<1.3	7.1.5	-	< 1.2		<1.3	0 1.	< 0.005	<1.3 U	< 0.982 U	< 0.005	< 1.1
fluorohexanoic acid (PFHxA)	NC	NC	NC	WC	L	<1.3	0.33	< 1.08	0.00504	< 1.3	<1.2	-	<1.2	0	<1.3	0	< 0.005	<1.3	< 0.582	< 0.005	< 1.1
fluorotetradecandic add (PFIA)	NC	NC	NC NC	WC	Ц	< 1.3	<1.3 0	CT.08	< 0.005 0	<1.3	7.1.>		<1.7		<1.3 U	- 0 - 1 >	< 0.005	<1.3	O 78670 >	< 0.005	< 1.1 0
fluorotridecanoic Acid (Phiris)	W.	NC	WC	W.		<1.3	<1.3	<t.08 td="" u<=""><td>< 0.005</td><td><1.3</td><td>7.1.5</td><td>0</td><td><1.2</td><td></td><td><1.3</td><td>0 12</td><td>< 0.005</td><td><1.3</td><td>< 0.982</td><td><0.005</td><td><1.1</td></t.08>	< 0.005	<1.3	7.1.5	0	<1.2		<1.3	0 12	< 0.005	<1.3	< 0.982	<0.005	<1.1
luoroundecanoic Acid (PFUnA)	NC	NC	NC	WC.		<1.3 U	0.28	< 1.08 U	< 0.005 U	0.33	< 1.2		< 1.2		0.34	<1	< 0.005	0.26	< 0.982 U	< 0.005	<1.1 0
							Name of					ŀ		The second second							
		2 200	4	1	- 1	C2 D 14 C2 D 11	Ocep	62 33 67 33	Sitaliow 67.33	62.34	Stallow C2 24 C2 24	22.34	31dillow 30	Darrielli Field							
		NSN - APS CITTELIA	PIE	l	Control lateral	O 11 (4 C) (2 D 11 IA	02 0 11 1 20	,	3	22 20 10 5 20	10	C 2 34 /0 C 31	62 32 (1 0 2 0)	52.07							
Parameters	0	0.00	04 0400	JON CAMPO NO	eptin interval 02	PIT-0-70 0 0-51T-0-1	02-0-11(4-0) 02-0-11(4-0) 02-0-11(4-0)	(2-52) (2-	2, 02-23 (03-2) 02-23 (03-2)	02-24 (0.5-2)	2-54 (0.5-2) (2-54 (0.5-2)	02-24 (0.3-2)	1	05-37							
	Total Mass	Total Masse	+	ON GWAL	pace Sampled ov	2	202/91/2020 01/10/202		101/10/2020 O//10/20	01/10/2020	Ve 00/10/20		1	00/24/2020							
2000 - 1000	COURT MISSO	TOTAL MOSS	1	37.0		94/90	1/8n 1/8n	90.00	1/80	94/90	ngue ngue	7/80	2	90/90							
filiopoortanois acid IDECA1	200	3v/3rl	+	Ť	and Association	N 100	1	П	2000		+	+	2017	-							
arthoroctanesultonic acid (DEOS)	Sum of	Com of		Sum of	l	- Laure	0.0134	1012	- 0 005	2.83	250000		3 06								
arfiliozopopanoje acid (DENIA)	C. DCAC		C DEAC	C.BCAC	l	1100	5000	1 01 2	20002	-11	0.00000		7 1 0 2	ŀ							
All configurations and 10 may				2	1	2017	20000	1000	20000	4110	0.00000		10000								
Stringing telephone and perhipsy	compounds	Campanuas	Compounds	compounds	1	0 5075	0 0000	1017	0 5000	777	0,000		CT01								
			+		1	0 000	0000	10.17	0000	111	0000	>	10.2 %	0							
Sum of PFAS Compounds	1,350	41,000	1.4	0.70		0.00	0.02	0.00	0.00	78.7	0.05		2.Ub								
Other PFAS Compounds Not on APS List																					
-chloroeicosatluoro-3-oxaundecane-1-sultonic acid (11CI-PE30UdS)	NC	NC	NC	NC.		< 1.05	< 0.005	< 1.01	< 0.005	<1.1	< 0.005		< 1.07	9							
8-dioxa-sH-permorononanoic acid (ADUNA)	NC	NC	NC.	N.C.		C TOP 0	< 0.005	0 1015	< 0.005	<1.1	500'02		< 1.07								
filoronexadecationo-3-oxanone-1-sulfonic acid (9CI-PT-SUNS)	N.	2	W.	ž		C 105	0 00000	0 1013	50000	FTS	50000		/T2								
othidocritico Locizoscillopamidosceticacid (NetFOSA)	J.N	N N	N.		1	COA S	50,05	1013	chills I		20000		51102								
nethylpermore a octanesuronamidoacetic acid (MMPPUSAA)	N.	W.		×	1	0 0000	0 00000	0 1013	0 50005		50000		100								
Thorobutanesuitonic acid IPEBSI	JA	NC	NC.	×	l	0 9012	0 50000	0 0 0	0 5000>	513	50000		< 1.07	ŀ							
rfluorodecanoic acid (PFDA)	NC	NC	NC	W.		< 1.05	0 50000	0 101 0	< 0.005	- 1.1.×	\$0000 ×	0	< 1.07								
rfluorododecanoic acid (PFDoA)	NC	NC	NC	NC	<u> </u>	c 1:05	0 50000	C 101 0	0 50005	C13	< 0.005	0	< 1.07	-							
TILOFONEXARDIC ACID (PFHXA)	NC.	NC		W.	L	C 1.05	< 0.0055	0 1013	< 0.0005	1775	0.00361		CT:07	0							
fluorotetradecanoic acid (PFTA)	NC	NC	NC	NC.		< 1.05	< 0.005	< 1.01	< 0.005	< 1.1	1 < 0.005		< 3.07	9							
rfluorotridecanoic Acid (PFTriA)	NC	NC	NC.	S.	1	<1.05	< 0.005	< 1.01	< 0.005	<1.1	< 0.005	0	< 1.07	-							
million outline carrier, water process	34	W.	N.	N.		V 1.05	< 0.0000	V 10.1.5	< 0.005	A.4.4	>0000		VT 2	0							

Notes

> DINC: Stackonfal Dwert Departer Christon

> Creft Conductured Christon

> Creft Configuration (Configuration Christon

> Creft Affice Configuration (Configuration Christon

> Creft Affice Configuration (Configuration Christon

> Not When Cultimate the Consultant Publicant Christon

> Medic Affice (Configuration (Configuration Christon

> Medic Affice (Configuration (Configuration Christon

> Affice Amongon (Configuration Christon Christon Christon

> Affice Affice (Configuration Christon Chris

Table 4Well Construction Details

ion					
ΜĐ	(feet)	93'26	93 98	93,14	92.95
, Elev. Depth to Water	(feet)	9.02	5.53	5.20	2.33
Bot Screen, Elev.	(feet)	83.26	82,32	60'08	84.26
Top of Screen,	Elev. (feet)	96.26	95,32	62'06	94.26
Grade Elev.	(feet)	103.26	99.82	66'66	98.76
Reference Elev.	(feet)	Calindars 8CT	99,51	98.34	98.28
Depth to Bottom	of Screen	20.0	17.5	19.3	14.5
Depth to Top	of Screen	7.0	4.5	4.3	4.5
1	screen Length Screen Interval	7.0-20.0	4.5-17.5	4.3-19.3	4.5-14.5
144	screen Length	13	13	15	10
747	well	GZ-1	GZ-2	£-Z9	6Z - -4
_					

Notos

- 1. Depth to water was measured on the above dates using an electric water level meter.
- 2. Elevations presented are relative to a selected datum at an assumed elevation of 100 feet, based on a survey completed by GZA on August 3, 2020.
- 3. The depth to groundwater in Site monitoring wells was measured relative to the top of the PVC riser pipe on August 20, 2020.
 - 4. Monitoring wells are constructed of 2-inch diameter schedule 40 PVC well screen and riser.
 - 5. Depth to groundwater is relative to the top of the PVC riser of the well.

Š	Table 5 Summary of Groundwater Analytical Results Cherry Brook Elementary School Canton, Connecticut	Table 5 Groundwater Analyi Brook Elementary 5 Canton, Connecticut	Table 5 ary of Groundwater Analytical R Cherry Brook Elementary School Canton, Connecticut	Results ol						
	RSR Criteria				Eastern Field	n Field			Southern Field	ו Field
Parameter	04,110	Units	CZ-5	-5	3	CZ-3	6Z-4	4	I-Z9	1
CT DEEP Additional Polluting Substances (APS) for PFAS	GWPC		8/14/2020	020	8/14/	8/14/2020	8/14/2020	2020	8/14/2020	020
Perfluorooctanoic acid (PFOA)		ng/L	810		14		260		< 3.8)
Perfluorooctanesulfonic acid (PFOS)	SUM	ng/L	2,800		89		820		1.50	J
Perfluorononanoic acid (PFNA)	of - 5	ng/L	2,900		24		300		1,40	ſ
Perfluoroheptanoic acid (PFHpA)	Compounds	ng/L	1,100		21		320		8'E >	Π
Perfluorohexanesulfonic acid (PFHxS)		ng/L	4,200		33		006		< 3.8	n
Sum of PFAS Compounds	20	ng/L	16,810		160		2,600		က	
Other PFAS Compounds Not on APS List										
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CI-PF3OUdS)	NC	ng/L	< 7.5	n	< 7.7 >	⊃	< 7.7 >	n	< 7.5	n
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	NC	ng/L	< 7.5	n	< 7.7 >	⊃	< 7.7	Π	< 7.5	n
9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9Cl-PF3ONS)	NC	ng/L	< 7.5	Π	< 7.7 >	N	L'L >	n	5' 2 >	Π
Hexafluoropropylene oxide dimer acid (GenX)	NC	ng/L	< 7.5	n	< 7.7	N	L'L >	n	5' 2 >	Π
N-ethylperfluoro-1-octanesulfonamidoacetic acid (NetFOSAA)	NC	ng/L	< 7.5	Π	< 7.7	N	2'L >	n	5' 2 >	Π
N-methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	NC	ng/L	< 7.5	Π	< 7.7 >	N	<i>L'L</i> >	n	5' 2 >	Π
Perfluorobutanesulfonic acid (PFBS)	NC	ng/L	200		2,30	ſ	28		< 3.8	n
Perfluorodecanoic acid (PFDA)	NC	ng/L	220		1.40	ſ	3.50	Ĵ	4,10	
Perfluorododecanoic acid (PFDoA)	NC	ng/L	1.00	Ĵ	< 3.8	N	< 3.8	n	8'E >	n
Perfluorohexanoic acid (PFHxA)	NC	ng/L	1,200		53		320		8'8 >	n
Perfluorotetradecanoic acid (PFTA)	NC	ng/L	< 3.8	n	< 3.8	N	< 3.8	N	8'E >	n
Perfluorotridecanoic Acid (PFTriA)	NC	ng/L	< 3.8	n	< 3.8	N	< 3.8	N	< 3.8	n
Perfluoroundecanoic Acid (PFUnA)	NC	ng/L	110		< 3.8	N	1.10	J	8 E >	Λ

- Notes:

 1. GWPC: Groundwater Protection Criteria
 2. Bold cells indicate exceedance of GWPC
 3. J- Estimated value
 4. U- Not detected, below Method Detection Limit
 5. ng/L nanograms per liter
 6. NC-No Criteria

FIGURES

0 110 220 SCALE IN FEET

440

CHERRY BROOK PRIMARY SCHOOL

POTABLE WATER SUPPLY PROPERTIES

PREPARED BY:

GZAG-GEDVIOTMENTAL Inc.

Engineers and Scientisis

www.gza.com

PROJINGR: RJD REVIEWED BY: CHECKED BY: RJD FIGURE

80 40

160

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

SHALLOW (0 TO 2') SOIL PFAS SAMPLE RESULTS (TOTAL MASS ANALYSIS IN ppb)

PREPARED FOR: PREPARED BY.

GZAGEOEnvironmental, Inc.
Engineers and Scientists
www.gra.com

CHECKED BY: RJD FIGURE

PROJ MGR: RJD REVIEWED BY:

SHALLOW CONTOURS

CLY GEOEVALOUMOULD INC. CXY-7; T+6°200-46°383/46283*183 LOAN OL CANLON/46283-01*8/10/LOREZ/B-LICE-bAYZ"B1 DNN LICZ ZHYTON 11X1X OLLOBEE 5 SUSO MICHAEL IJINOFO

DRAWN BY: MJT SCALE: AS SHOWN

DESIGNED BY:

CHERRY BROOK PRIMARY SCHOOL

PREPARED BY:

C2A.GeoEmironmental Inc.

Engineers and Scientiss

"ww.gia.com
PROJ MOR. R.D. REVIEWED BY: OHEOGED BY RD FIGURE

SHALLOW (0-2') SOIL PFAS SAMPLE RESULTS (SPLP ANALYSIS IN ppb)

Z

160

80 40

0

SCALE IN FEET

1 OF 1

CHERRY BROOK PRIMARY SCHOOL

160

80 40

Z

SCALE IN FEET

DEEP (4' TO 6') SOIL PFAS SAMPLE RESULTS (TOTAL MASS ANALYSIS IN PPB)

PREPARED BY.

GZAGOETWIOTIMENTIAI, Inc.

Engineers and Scientists

www.gza.com

CHECKED BY: RJD FIGURE PROJ MGR: RJD REVIEWED BY:

40 80

160

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

DEEP (4'-6') SOIL PFAS SAMPLE RESULTS (SPLP ANALYSIS IN PPB)

PREPARED FOR: TOWN OF CANTON PREPARED BY.

GZAGeoEnvironmental, Inc.
Engineers and Scientists
www.gza.com

CHECKED BY: RJD FIGURE PROJ MGR: RJD REVIEWED BY:

40 80

160

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

GROUNDWATER FLOW DIRECTION

PREPARED FOR GLAGOEIN/TOMINITAIL Inc.
Engineers and Scientiss TOWN OF CANTON Wargracom

PROJ MGR: RJD REVIEWED BY: CHECKED BY: RJD FIGURE

80 40

160

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

PFAS GROUNDWATER PLUME

PREPARED FOR GLAGOEIN/frommental. Inc.
Engineers and Scientists TOWN OF CANTON www.gazonn

снескер ву: Rub FIGURE

95 Glastonbury Boulevard 3rd Floor Glastonbury, CT 06033 T: 860.286.8900 F: 860.633.5699

October 26, 2020 File NO. 05.P000250.21

Mr. Robert H. Skinner Chief Administrative Officer Canton Town Hall, P.O. Box 168 4 Market Street Collinsville, CT 06019

RE: Additional Soil & Groundwater Delineation – Change Order No. 02 Cherry Brook Primary School, 4 Barbourtown Road, Canton

Dear Mr. Skinner,

GZA GeoEnvironmental, Inc. (GZA) is pleased to submit this Change Order to the Town of Canton to provide supplemental environmental subsurface investigations to further delineate the extent of a historic fire training release of Aqueous Film Forming Foam (AFFF) containing Per- and Polyfluorinated Alkyl Substances (PFAS) at the Cherry Brook Primary School. These additional services are in response to a Connecticut Department of Energy and Environmental Protection (DEEP) e-mail dated October 8, 2020 requesting that further site characterization, including groundwater investigations be completed. GZA is proposing the following Scope-of-Work:

- 1) Collection of additional shallow soil samples to further delineate the extent of contamination in the Southern Field. The current data has identified increased concentrations west of the suspected fire-fighting foam release area.
- 2) Collection of additional shallow and deep soil samples to delineate the extent of soil removal within the Eastern Field. The goal is to further define those limits exceeding a regulatory limit to reduce the volume of soil to be removed. These soil data will also be used to predetermine the excavation limits and avoid the collection of confirmatory soil samples, typically required during remedial excavation activities. From a safety perspective, this will limit the amount of time the excavation is open during the remediation.
- 3) Installation of groundwater monitoring wells to further define the nature and extent of the groundwater contamination.
- 4) Collection of surface water samples downgradient of the groundwater plume.
- 5) Collection of a potable water supply sample from the 225 Cherry Brook Road property, pending permission.
- 6) Comparing the data to the Remediation Standard Regulations (RSRs) that include Additional Polluting Substance (APS) where criteria for PFAS are listed (Combined, referred to as the RSRs).
- 7) Collection of hydrogeologic data to develop a Monitored Natural Attenuation remedial approach to the groundwater contamination.
- 8) Submit a summary report of the subsurface investigations.
- 9) Develop a remedial action plan and remedial cost estimate.

Background

Historic fire training drills, using AFFF, were performed at two locations at the Cherry Brook Primary School. These locations include: 1) the grassy field area between the school's parking lot and Barbourtown Road (referred to as the "Eastern Field"); and 2) a grassy field south of the school building and north of a playscape (referred to as the "Southern Field").

In DEEP's e-mail (October 8, 2020), the Department concurred with GZA's opinion that soil remedial actions can be limited to those concentrations reported above the GA Pollutant Mobility Criteria (GA-PMC) using an alternative leaching method (SPLP) rather than remediating to a total mass analysis based criteria. The GA-PMC alternative (SPLP analysis) would be 10 x the Groundwater Protection Criteria (GWPC) of 70 ng/L or 700 ng/L (0.7 parts per billion – ppb). Application of this alternative remedial approach has the potential for reducing the volume of excavation from approximately 10,000 cubic yards (cys) to approximately 2,500 cys. This alternative methodology will reduce the overall remedial cost.

Our investigations to date have indicated the following:

- 1. No potable water supply well sampled, within a 500-foot radius of the school grounds, detected PFAS concentrations above the Department of Public Health's drinking water action limit of 70 parts per trillion (ng/L). One potable water supply well (210 Cherry Brook Road) had a trace PFAS concentration detection of 0.9 ng/L.
- 2. In the Southern Field, the results from the SPLP analyses were below the 0.7 ppb criteria for both the shallow and deep soil samples. While, this would indicate no future characterization or that remedial action may not be required, the results from the total mass analysis have indicated an increasing trend of concentrations to the northwest, outside the limits where fire-fighting foams were reportedly used. Therefore, this scope will further assess the shallow soil to the west/northwest where increasing concentrations have been reported. The goal of this sampling is to confirm that the firefighting foams were not applied further west than reported.
- 3. In the Eastern Field, the results from the SPLP analyses were above the 0.7 ppb criteria in both the shallow and deep soil samples. Currently, GZA has estimated approximately 2,500 cubic yards (3,250 tons) of soil may have to be excavated.
- 4. Groundwater concentrations beneath and down gradient of the Eastern Field release were above the RSR Groundwater Protection Criteria (GWPC) of 70 ng/L. DEEP has requested that additional monitoring wells be installed to delineate the nature and extent of the PFAS plume.
- 5. Groundwater concentrations downgradient of the Southern Field were below the GWPC.
- 6. No surface water samples have been collected. However, because of the downgradient concentrations detected in groundwater in the Eastern Field, surface water samples are recommended.

The goals of these investigations are: 1) further delineate the nature and extent of the groundwater contamination,

- 2) further delineate the soil limits greater than the GA-PMC in an effort to reduce the volume of soil to be removed,
- 3) provide a sufficient number of soil samples so that during the PFAS excavation no confirmation sampling would be required on side walls and bottom of the excavation, and 4) to develop a strong hydrogeologic conceptual site model (CSM) to support a monitored natural attenuation (MNA) approach to groundwater remediation after completion of the soil remedial excavation program.

Our initial groundwater CSM presumes that the release of the PFAS to the Eastern Field has migrated into the underlying glacial outwash valley deposits which are recharged from the surrounding hills groundwater. As the groundwater recharges these deposits, it likely upwells and discharges into Cherry Brook. Therefore, it is possible that the groundwater contamination identified may be limited to the upper groundwater profile due to vertical upward groundwater flow, if present. Provided that PFAS concentrations in the deep groundwater are not above the GWPC, then any recharge to the underlying bedrock would be from groundwater below the PFAS criteria, limiting potential

impacts to adjacent bedrock potable water supply wells. Regional recharge to the bedrock may be from a bedrock fault located approximately 350-feet to the east of the intersection of Cherry Brook Road and Barbourtown Road. The proposed groundwater investigation will be used to further refine this CSM. In addition, select wells will be subsequently incorporated into the post remediation groundwater program, as required in the RSRs.

SCOPE OF SERVICES

GZA has developed a phased exploration program as follows:

Task 1. Additional Soil Delineations

A. Southern Field

Sampling data identified elevated concentrations of PFAS (below 10 x GWPC) west of the reported application area where fire-fighting foams were used. Figure 1 shows proposed sampling locations and the rationale for sampling is summarized in Table 1.0.

		Table 1.0 Southern Field – Proposed Soil Sampling
Soil Boring Location	Depth (feet)	Rationale
		The Town fire department indicated that foams were applied in the vicinity of GZ-10.
GZ-101 & GZ-101D	0-2 & 4-6	However, the data suggests increased concentration west of GZ-37 and GZ-24. GZA
GZ-102	0-2	proposes 3-additional shallow and 1-deep soil samples. These samples will be
GZ-103	0-2	analyzed for total PFAS. These are being collected in an abundance of precaution
		because this is an elementary school.

All soil and quality control samples will be analyzed for total and SPLP PFAS using a laboratory modified EPA Method 537.1 revision 2 as shown on Table 6.0.

B. <u>Eastern Field</u>

Sampling data identified elevated concentrations of PFAS above 10 x GWPC in both the shallow and deep soil samples. The proposed borings in this area will be used to further delineate the limits of the potential soil excavation. GZA will recommend within the Remedial Action Plan (RAP) that no confirmation soil sampling be collected due to the level of this investigation. This will make the excavation and backfilling more efficient especially given that the proposed remedial actions will be conducted at the elementary school. Our goal is to limit the time that the excavation (potentially to 7-feet deep) is open.

The other option is to leave the excavation open for 2-weeks waiting for laboratory confirmation analyses before backfilling. Alternative one to this option is to expedite the analysis (3-days from laboratory receipt of the samples) which would include a 100% surcharge on each soil sample or approximately \$500 per sample analysis. Alternative two would be to collect the samples, backfill the excavation and if there is an exceedance re-excavate and remove additional soil. Figures 2 & 3 show proposed shallow and deep sampling locations and the rationale for sampling is summarized in Tables 2.0 and 3.0.

		Table 2.0 Eastern Field – Shallow Soil Borings
Soil Boring Location	Depth (feet)	Rationale
GZ-104 GZ-105 GZ-106	0-2 0-2 0-2	These borings are intended to define the eastern extent of the SPLP data exceeding 10 x the GWPC of 0.7 ppb, north of GZ-30 and south of GZ-36, along Barbourtown Road.
		Table 3.0 Eastern Field – Shallow Soil Borings
GZ-107 GZ-108 GZ-109 GZ-110 GZ-111	4-6 4-6 4-6 4-6 4-6	These borings are intended to further delineate the boundary of concentrations greater than 10 x the GWPC of 0.7 ppb. The goal is to reduce the excavation footprint and these data will be used in-leu of post-excavation samples.

All soil and quality control samples will be analyzed for total and SPLP PFAS using a laboratory modified EPA Method 537.1 revision 2 as shown on Table 6.0.

Task 2. Additional Groundwater Sampling

The initial placement of the monitoring wells was to assess if PFAS concentrations in groundwater were present beneath and downgradient of the release area and to assess the local groundwater flow direction. Based upon the surrounding surface water bodies, groundwater flow could potentially flow to the north towards a small tributary of Cherry Brook (Barbour Brook), to the east towards Cherry Brook or to the south towards Cherry Brook where Cherry Brook makes a 90-degree turning to the southwest. Groundwater measurements indicated that groundwater flow is towards the south-southeast and toward Cherry Brook, just northeast of the intersection of Barbourtown Road and Cherry Brook Road.

The groundwater data collected from the recent site investigations identified the sum of the 5-PFAS compound concentrations greater than the GWPC, at all three monitoring wells that were installed across the water table in the Eastern Field. The greatest concentration was reported directly beneath the most elevated soil concentrations with a groundwater concentration of 16,810 ng/L. Downgradient of this location, groundwater concentrations were reported at 2,600 ng/L, approximately 250-feet upgradient of Cherry Brook. In addition, elevated concentration (160 ng/L) were reported east of the release and approximately 250-feet west of Cherry Brook, along BarbourtownRoad.

Additional plume delineation is required to comply with the DEEP Site Characterization Guidance Document. Because surface water surrounds the release area on three sides, these supplemental investigations will focus on defining the nature and extent of the PFAS plume. Upgradient wells will be installed because the school is served by potable water supply wells. Figure 4 show the locations of the proposed monitoring wells and Table 4 provides the rationale for their installation. GZA understands that the Town of Canton owns these properties where these wells are proposed. An effort will be made to keep monitoring wells off the playing fields or if necessary, buried beneath a minimum of 6 inches of topsoil to prevent injuries should a player fall on the monitoring wells protective casing.

The initial borings encountered large cobbles and small boulders inhibiting the advancement of the GeoProbe™ drill rig to approximately 10 to 12 feet below grade. A larger auger rig was brought on-site to get past these natural deposits; however, auger refusal was encountered at GZ-4. To avoid having to remobilize multiple drill rigs, GZA has proposed to use a RotoSonic drill rig. While more expensive, this rig will achieve the monitoring well depths outlines outlined in Table 4.0. Based upon the mapped local geologic deposits, large cobbles/small boulders would be anticipated with depth beyond 14-feet which can be managed with this drilling technique.

Upon completion of the monitoring well installation, GZA will develop these wells to remove fines and to ensure good communication between the aquifer and the well screen. One week following well development, GZA will sample the new wells for PFAS.

		Table 4.0 Monitoring Wells				
Well Location	Depth (feet)	Rationale				
GZ-2I	25 to 30	These wells will be co-located at GZ-2. The goal is to define the vertical extent and to determine vertical				
GZ-2D	40 to 45	hydraulic gradient with depth.				
GZ-4I	25 to 30	These wells will be co-located at GZ-4. The goal is to define the vertical extent and to determine vertical				
GZ-4D	40 to 45	hydraulic gradient with depth.				
GZ-5	5 to 15	Shallow upgradient well located between the release and the on-site potable water supply wells.				
GZ-6	5 to 15	Shallow upgradient well near the stream to the north.				
GZ-7	5 to 15	Well cluster to define the migration of PFAS to the northeast to demonstrate regulatory compliance levels.				
GZ-7I	25 to 30	There is likely a radial flow component from the release due to the alignment of the stream.				
GZ-8	5 to 15	Well cluster to define the migration of PFAS to east, adjacent to the stream to demonstrate regulatory				
GZ-8I	25 to 30	compliance levels. There is likely a radial flow component from the release due to the alignment of the stream.				
GZ-9	5 to 15	Wall alustor to delineate the houndary between C7.2 and C7.1 (couthern Field) DEAS plumes are				
GZ-9I	25 to 30	Well cluster to delineate the boundary between GZ-2 and GZ-1 (southern Field). PFAS plumes are typically long and narrow.				
GZ-10	5 to 15	This well is to define the southern extent of the plume				
GZ-11	5 to 15	These cluster wells are located to define the southern concentration upgradient of the stream. These wells				
GZ-11I	25 to 30	will also be used to assess vertical gradients. GZ-11 cluster is approximately hydraulically downgradient of GZ-2.				

All groundwater and quality control samples will be analyzed for total PFAS using EPA Method 537.1 revision 2, as shown on Table 6.0.

Task 3. Surface Water Sampling

No surface water samples have been collected to date; however, the most downgradient monitoring well has reported PFAS concentrations 37 x the GWPC which is located approximately 250-feet upgradient of Cherry Brook. While DEEP does not have a Surface Water Protection Criteria (SWPC), they are in the process of developing a criterion. These proposed sampling locations will assess 1) upgradient background concentrations, 2) potential discharge concentrations east and south of the release, and 3) downgradient of the plume after mixing with the surface water of Cherry Brook. Figure 5 shows the locations of the proposed surface water samples and Table 5.0 provides a rationale for the collection of the samples. Surface water sampling will be completed only after the groundwater analyses have been reviewed.

		Table 5.0 Surface Water Sampling Locations
Well Location	Depth (feet)	Rationale
S - 1	mid-stream	Background of Barbour Brook at the Barbourtown Road culvert
S - 2	mid-stream	Impact of the plume migrating to the east of GZ-3, near GZ-8/GZ-8I
S - 3	mid-stream	Downgradient sample from the core of the plume, near GZ-11/GZ-11I
S - 4	mid-stream	Downgradient sample outside the suspected plume discharge
S - 5	mid-stream	Downgradient sample at the culvert on West Mountain Road

All surface water and quality control samples will be analyzed for total PFAS using EPA Method 537.1 revision 2, as shown on Table 6.0.

Task 4. Potable Water Supply Sample

Provided that the Town of Canton receives permission to sample the potable water supply well at 225 Cherry Brook Road, GZA will collect a tap water sample before any filtration systems. This sample will be analyzed by EPA Method 537.1, revision 2.

Task 5. Quality Control

Because PFAS is regulated in the parts per trillion and there is the potential for false positives during sampling activities, GZA will adhere to strict quality control procedures. During field sampling, our staff will follow GZA's stringent standard operation procedures (SOP). To ensure data quality and repeatability, quality control analyses will include field duplicates, trip blanks, field and equipment blanks, and internal laboratory MS/MSD samples. Table 6.0 identifies the various media and quality control samples to be collected.

			Si	ample and	Table 6		nalyses				
	Shallow	Shallow	Deep	Deep				Quali	ty Contro	Samples	
Location	Soil Total Mass	Soil By SPLP	Soil Total Mass	Soil By SPLP	GW	SW	Field Duplicate	Field Blank s	Trip Blanks	Equipment Blanks	MS/ MSD
Southern Field 4 1 1 1 1 1 2								r			
Eastern Field	3	3	5	5			1	1	1	1	2
Groundwater					16		1	2	2	1	2
Surface Water						5	1	1			2
Potable Water					1		1	1	1		
Totals	7	3	6	5	17	5	4	5	4	2	6

GW = groundwater; SW = surface water

Task 6. Hydrogeologic Analysis

The monitoring wells will be used to: 1) evaluate the nature and extent of the PFAS plume, 2) evaluate the vertical and horizontal hydraulic gradient, and 3) estimate the hydraulic conductivity (slug tests) of the subsurface soils and to calculate a seepage velocity. These hydraulic analyses will be used to assess if a groundwater MNA remedial remedy can be proposed rather than having to actively remediate the groundwater, after the soil remediation action is implemented.

A MNA solution would be preferred since there are limited groundwater treatment options such as long-term pump using treat using granular activated carbon, ion exchange or injection of a carbon substrate into the aquifer to temporarily reduce/retard the discharge of the plume into Cherry Brook. These active solutions would take years to achieve compliance and may not provide any additional environmental protection over an MNA approach.

To evaluate the hydrogeology, GZA proposes:

- A. Measure groundwater water levels in each of the monitoring wells during one comprehensive event. These data will be collected in conjunction with the slug tests (see "C" below).
- B. Based upon groundwater levels, calculate vertical and horizontal hydraulic gradients, and develop a groundwater contour map for each of the vertical intervals.

- C. Conduct up to two days of slug tests to collect data to evaluate hydraulic conductivity, at select wells. GZA has estimated that approximately 6 to 10 monitoring wells will be evaluated. Slug tests will be completed after the groundwater samples have been collected to avoid any potential cross-contamination.
- D. Once the slug test data have been compiled, GZA will calculate various hydraulic conductivities for the well screen intervals and will calculate a seepage velocity for each of the vertical intervals.

Task 7. Survey

GZA will subcontract a licensed surveyor to locate all soil, groundwater, and surface sampling locations. These data will be needed to define the limits for the soil remediation and to calculate volumes of soil to be removed. Based upon these estimated volumes, GZA will calculate a remedial cost estimate, see Task 9B.

Task 8. Characterization Report

Upon the completion of the proposed multimedia sampling, GZA will develop a subsurface investigation report that will form the basis of developing the soil remediation plan. This will include summaries of analytical results compared to regulatory criteria, concentration graphics depicting areas above and below the regulatory criteria, development of a groundwater contour map, hydraulic calculations including hydraulic conductivity, seepage velocities, and vertical direction of groundwater flow.

A separate report will be provided for the potable water supply well sample.

Task 9. Remedial Action Plan

A. Subcontractor Bid Request

In conjunction with the development of a RAP, GZA will evaluate the soil data collected to estimate the volume of soil exceeding the alternative GA-PMC of 10 x GWPC. GZA will work with at least three contractors and or disposal facilities to estimate the remedial cost that will be included in the RAP. These costs will include: 1) securing the proposed excavation area and developing traffic patterns to minimize interruptions to the school, 2) excavation of the soil contaminant area greater than the alternative GA-PMC limits, 3) transportation and disposal of the PFAS soil to either a landfill or incinerator, 4) backfill and compaction of select materials including topsoil, and 5) final regrading and seeding.

B. Remedial Action Plan

GZA will develop a RAP to be submitted to both the DEEP and DPH for their approval prior to implementing any remedial action. The remedial action plan will define those soils to be removed based upon the regulatory action levels. GZA will also develop a rationale as to why no final soil confirmation will be proposed during the excavation. The rationale will include health and safety considerations, ability to backfill the excavation the same day, and that PFAS analyses take 10-days for analysis or pay a significant surcharge to receive the samples in 24 to 72 hours.

The RAP would include a series of construction drawings which will depict the vertical and lateral limits of the excavation. For instance, based upon the SPLP data, the area of the greatest excavation will be in the shallow soils from 0 to 3 or 4 feet below grade. At depth, the SPLP data suggest that the areal impact is less and concentrated directly below those shallow soils with the greatest PFAS impacts.

Under the DEEP remedial guidelines, in a GA classified groundwater zone, soils will be excavated to the seasonal low water table. Currently, Connecticut is undergoing a drought situation where the existing groundwater may be at the

seasonal low water table. However, GZA will evaluate adjacent USGS groundwater monitoring wells to determine if there are any variability between the site groundwater conditions and low seasonal groundwater conditions observed at a proximate USGS monitoring well. These data will be used to determine the final excavation depth. The goal would be to limit any excavation dewatering to achieve the seasonal low groundwater condition required or soil excavation.

As part of the RAP, GZA will estimate the cost for remediating the soils to the seasonal low water table. These costs will assume a 1.3 times estimation to convert from cubic yards to tons. However, the final disposal cost will be based upon the actual weight calculated at either the landfill or incinerator facility. These costs will also account for those factors listed in Section 5 above that include clean backfill material, the compaction of this material, and final grading with topsoil and seeding.

Task 10. Communications - Meeting & Calls

GZA will provide periodic discussions with the Town of Canton (including updating the Board of Selectman), its insurance company, and the regulatory agencies of DEEP and DPH. This scope includes participation of one Town meeting to discuss the site characterization data collected, potential remediation and costs.

RESPONSIBILITIES OF CLIENT

To complete the investigations outlined above, GZA will require the following from the Town:

- Provide a utility map in the areas of the proposed investigations.
- Access to the school and Town owned property will be coordinated by the Town.
- Access to the 225 Cherry Brook Road property will be coordinated by the Town.
- Several of the proposed investigations will be located on the Town owned property across the street from the school between Barbourtown Road and Cherry Brook. GZA requests that the Town of Canton review the proposed locations to ensure that they are on Town owned lands.
- The Town would be responsible for the disposal of any investigation derived wastes (IDW). At this time, GZA would propose to incorporate any soil removed during these investigations into the proposed soil remedial action. As part of the groundwater assessment, drums of purge water will be generated. GZA can manage the IDW for the Town under a separate change order once the total number of drums is known. GZA has not included waste disposal in this change order.

SCHEDULE

GZA is prepared to commence the work upon authorization. GZA understands that the Town would like to resolve these issues and GZA will work closely with the Town, its insurance and DEEP/DPH to complete this work, as quickly as possible.

A tentative schedule from authorization, is as follows, subject to the availability of drillers.

			Weeks after Authorization								
	Task		2	3	4	5	6	7	8	9	10
	Additional Soil Delineation										
1	Laboratory Analyses										
	Monitoring Well Installation										
	Monitoring Well Development										
	Groundwater sampling										
2	Laboratory Analyses										
	SW Sampling										
3	Laboratory Analyses										
	Potable Well Sampling										
4	Laboratory Analyses										
	Hydrogeologic Assessment (Water Level)										
	Hydrogeologic Assessment (Slug Test)										
6	Hydrogeologic Analysis										
7	Survey										
8	Characterization Report										
9	Subcontractor Bid Request										
9	RAP										
10	Communication										
			Field Ac	tivities		Laborato	y analyses		Analysis	and Repor	ting

The schedule can be expedited by requesting a quicker turn-around time from the laboratory; however, that would require a premium surcharge. GZA will work to expedite the schedule without the laboratory surcharge where possible.

COST AND BASIS OF BILLING

GZA has estimated the cost of the Scope-of-Work at \$129,750 on a time and material basis in accordance with the attached fee schedule (this price includes approximately \$15,000 of analytical and \$56,000 in drilling costs). The estimated cost is based upon GZA using a preferred qualified laboratory and a 5-day turn-around from receipt of the samples at their laboratory. The labor fees are consistent with our DAS contract. Direct and out-of-pocket expenses and subcontractor expenses will be subject to a 5% mark-up and assumes as a municipality all services will be tax exempt (tax exempt letter will be required by subcontractors).

GZA costs are broken out as follows:

Tasks	Costs		
1) Additional Soil Delineation	\$10,750		
2) Additional Groundwater Sampling	\$82,500		
3) Surface Water Sampling	\$3,250		
4) Potable Water Supply Sampling	\$1,750		
5) Quality Control	Costs included in Tasks 1 - 4		
6) Hydrogeologic Analysis	\$7,500		
7) Survey	\$5,000		
8) Characterization Report	\$10,000		
9) Remedial Action Plan	\$8,500		
10) Communications – Meetings & Calls	\$5,500		
Total	\$134,750		

GZA's cost estimate is based on the anticipated scope of services outlined above, which represent our present judgment as to the level of service that will be needed. The Town of Canton will be notified of any conditions

requiring a change in the level of effort or the scope of work and any resultant change in budget if such becomes evident.

Progress invoices will be issued approximately every four weeks. Payment is due within 30 days of receipt. Interest charges may be applied on past due balances.

Invoices are the responsibility of Client. Invoices will be sent to the Town of Canton care of Mr. Robert H. Skinner at the above address. Should the billing information change, please provide that information on the last page of this agreement.

PROJECT COMMUNICATION PLAN

GZA is committed to providing its clients consistent input on project performance, budget, and schedule, but recognizes each client wants this information delivered in a way that best meets his or her needs. Typically, we rely on regular scheduled phone calls, emails or letter reports which can be weekly, bi-weekly, or monthly. To establish the Communication Plan that works best for you, GZA's Principal-in-Charge (Mr. Richard J. Desrosiers, LEP, PG) will contact you directly upon our receipt of the signed contract or other authorization to proceed.

CONDITIONS OF ENGAGEMENT AND ACCEPTANCE

GZA is submitting this change order with the belief that we will be able to fulfill the scope requirements during this COVID-19 Pandemic crisis. If performance is rendered impossible because of the impacts of COVID-19, GZA will notify Client of that Force Majeure event. Conditions of engagement are described in the Contract dated November 26, 2019. This Proposal for Services and the Terms and Conditions shall constitute the entire agreement between GZA and The Town of Canton. This change order may be accepted by signing in the appropriate spaces below and returning one copy along with the retainer to GZA. Issuance of a purchase order implicitly acknowledges acceptance of our Terms and Conditions.

Consultant is not responsible for delays caused by factors beyond Consultant's reasonable control, including but not limited to pandemics, epidemics, frustration, strikes, lockouts, work slowdowns, or work stoppages (whether by Client or by government action); accidents or acts of God; failure of governmental or other regulatory authorities to act in a timely manner; shutdown of governmental or other regulatory authorities; or failure of the Client to furnish timely information, review comments, in a timely manner. When such delays beyond Consultant's reasonable control occur, the Client agrees that Consultant is not responsible for damages, nor will Consultant be deemed to be in default of this Contract. If the performance of this Agreement is affected by the Force Majeure Event Consultant shall undertake reasonable measures to make up for the time lost through delay and Consultant shall be compensated for delays including but not limited to demobilization and mobilization, increased staffing, multiple shifts, additional materials and equipment. If performance by Consultant is delayed due to a Force Majeure Event, the Schedule will be extended for a period of time reasonably necessary to overcome the effect of the delay, subject to Purchaser's right to terminate this Agreement in whole or in part.

Thank you for the opportunity to provide these services to the Town of Canton. If you have any questions, please call Richard Desrosiers at 1-860-858-3130.

Very truly yours,

Richard J. Desrosiers, LEP, PG
Associate Principal, Hydrogeologist

GZA GEOENVIRONMENTAL, INC.

David Rusczyk, P.E. Associate Principal

Attachments: Figure 1 – Proposed Soil Samples (Southern Field)

Figure 2 – Proposed Soil Samples (Eastern Field – Shallow) Figure 3 – Proposed Soil Samples (Eastern Field- Deep)

Figure 4 – Proposed Monitoring Wells
Figure 5 – Proposed Surface Water Samples

p:\vernon\2021\21-250 town of canton\change order no. 2 final.docx

This Proposal and the Terms and Conditions (08/08-Edition 05-9010) is hereby accepted and executed by a duly authorized signatory, who by execution hereof, warrants that he/she has full authority to act for, in the name, and on behalf of Client.

Town of Canton, Connecticut	
Ву:	lts:
Printed Name:	
Billing Address (if different from above):	

SCALE IN FEET 0 12.5 25

20

CHERRY BROOK PRIMARY SCHOOL

PROPOSED SOIL SAMPLES (SOUTHERN FIELD)

PREPARED FOR:

GZAGOCENVIONDENIAI Inc.

Engineers and Solentists

WWIGZALOM

WWIGGALOM

PROJMOR RJD REVIEWED BY: OHECKED BY: RJD FIGURE DESIGNED BY: MJT SCALE: AS SHOWN

GZ-101

GZ-102

GZ-103

Z

GZ-106

GZ-105

GZ-104

SCALE IN FEET 20 40

80

CHERRY BROOK PRIMARY SCHOOL

PREPARED FOR: TOWN OF CANTON PREPARED BY:

GZAO-Environmental, Inc.

Engineers and Scientists

www.gza.com

снескер ву: Rub FIGURE

PROJMGR: RJD REVIEWED BY: CHECKED BY: RJD DESIGNED BY: MT SCALE: AS SHOWN

PROPOSED SOIL SAMPLES (EASTERN FIELD - SHALLOW)

0

10-12-2020

Z

GZ-108

GZ-110

GZ-107

20 40

GZ-111

80

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

PROPOSED SOIL SAMPLES (EASTERN FIELD DEEP)

PROJIMGR: RJD REVIEWED BY: CHECKED BY: RJD FIGURE

40 80 160

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

PROPOSED MONITORING WELLS

PREPARED BY:

GZAGOEnvironmental, Inc.
Engineers and Scientists

мичидавлот ними девлот на FIGURE на FIGURE

Z

0 100 200 400

SCALE IN FEET

SCALE IN FEET

CHERRY BROOK PRIMARY SCHOOL

PREPARED BY

TOWN OF CANTON

WANGER COM

TOWN OF CANTON

WANGER COM

TOWN OF CANTON

PROJECT

TOWN OF CANTON

WANGER COM

TOWN OF CANTON

TOWN OF CA

S-3 S-3 S-3

ဟု တ

S-4

Z

